Practice on probability distributions

1. X is a normally distributed variable with mean $\mu=30$ and standard deviation $\sigma=4$. Find
a) $\mathrm{P}(\mathrm{x}<40)=\mathrm{P}(\mathrm{x}-30 / 4<40-30 / 4)=\mathrm{P}(\mathrm{z}<2.5)=1-\mathrm{P}(\mathrm{z}>2.5)=1-\mathrm{P}(\mathrm{z}<-2.5)=1-0.0062$
b) $\mathrm{P}(\mathrm{x}>21)=\mathrm{P}(\mathrm{z}>21-30 / 4)=\mathrm{P}(\mathrm{z}>-2.25)=1-\mathrm{P}(\mathrm{z}<-2.25)=1-0.0122$
c) $\mathrm{P}(30<\mathrm{x}<35)=\mathrm{P}(30-30 / 4<\mathrm{z}<35-30 / 4)=\mathrm{P}(0<\mathrm{z}<1.25)=\mathrm{P}(\mathrm{z}<1.25)-\mathrm{P}(\mathrm{z}<0)=1-\mathrm{P}(\mathrm{z}>1.25)-0.5$
$=0.5-\mathrm{P}(\mathrm{z}<-1.25)=0.5-0.1056$
2. For a certain type of computers, the length of time between charges of the battery is normally distributed with a mean of 50 hours and a standard deviation of 15 hours. John owns one of these computers and wants to know the probability that the length of time will be between 50 and 70 hours.

X=battery life
$\mathrm{P}(50<\mathrm{z}<70)=\mathrm{P}(50-50 / 15<\mathrm{z}<70-50 / 15)=\mathrm{P}(0<\mathrm{z}<1.33)=\mathrm{P}(\mathrm{z}<1.33)-\mathrm{P}(\mathrm{z}<0)=1-\mathrm{P}(\mathrm{z}>1.33)-0.5$
$=0.5-P(z<-1.33)=0.5-0.0918$
3. Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100 . Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Tom takes the test and scores 585 . Will he be admitted to this university?
4. The time taken to assemble a car in a certain plant is a random variable having a normal distribution of 20 hours and a standard deviation of 2 hours. What is the probability that a car can be assembled at this plant in a period of time
a) less than 19.5 hours?
b) between 20 and 22 hours?
5. A large group of students took a test in Physics and the final grades have a mean of 70 and a standard deviation of 10 . If we can approximate the distribution of these grades by a normal distribution, what percent of the students
a) scored higher than 80 ?
b) should pass the test (grades ≥ 60)?
c) should fail the test (grades<60)?

6.

In a large restaurant an average of 3 out of every 5 customers ask for water with their meal.
A random sample of 10 customers is selected.
(a) Find the probability that
(i) exactly 6 ask for water with their meal,
(ii) less than 9 ask for water with their meal.

A second random sample of 50 customers is selected.
(b) Find the smallest value of n such that

$$
\mathrm{P}(X<n) \geqslant 0.9
$$

where the random variable X represents the number of these customers who ask for water.
$\mathrm{X}=$ number of customers ask for water out of 10 customers
X follows a binomial distribution where success event is that a customer asks for a water
$P($ success $)=3 / 5$ thus $X \sim \operatorname{Bin}(10,3 / 5)$
a) I) $P(X=6)=10 C 6^{*}(3 / 5)^{\wedge} 6^{*}(2 / 5)^{\wedge} 4$
ii) $P(X<9)=1-P(X \geq 9)=1-P(X=9)-P(X=10)=0.95$
b) $\mathrm{P}(\mathrm{X}<8)=1-\mathrm{P}(\mathrm{X} \geq 8)=1-\mathrm{P}(\mathrm{X}=8)-\mathrm{P}(\mathrm{X}=9)-\mathrm{P}(\mathrm{X}=10)=0.82$

Since $P(X<8)<0.9, n=9$ is the smallest number where $P(X<n) \leq 0.9$.
7.

In a game, players select sticks at random from a box containing a large number of sticks of different lengths. The length, in cm , of a randomly chosen stick has a continuous uniform distribution over the interval $[7,10]$.

A stick is selected at random from the box.
(a) Find the probability that the stick is shorter than 9.5 cm .

To win a bag of sweets, a player must select 3 sticks and wins if the length of the longest stick is more than 9.5 cm .
(b) Find the probability of winning a bag of sweets.

To win a soft toy, a player must select 6 sticks and wins the toy if more than four of the sticks are shorter than 7.6 cm .
(c) Find the probability of winning a soft toy.

$K^{*}(10-7)=1 \quad \therefore k=1 / 3$
(a)

Here we are asked to find the darken area

$$
P(X<9.5)=P(7<X<9.5)=(1 / 3) *(9.5-7)=2.5 / 3
$$

For (b), we can define a random variable (Y = number of sticks, out of 3, longer than 9.5) which follows a binomial distribution with success probability is $P(X>9.5)$ and $n=3$. You have to calculate $P(Y>0)=p(Y=0)$

For (c), calculate $\mathrm{P}(\mathrm{X}<7.6$) and take it as the success probability for a new random variable ($\mathrm{W}=$ number of stick, out of 6 , shorter than 7.6) which follows a binomial distribution with $n=6$. Find $P(W>4)$
8.

A factory produces components of which 1% are defective. The components are packed in boxes of 10 . A box is selected at random.
(a) Find the probability that the box contains exactly one defective component.
(b) Find the probability that there are at least 2 defective components in the box.
(c) Using a suitable approximation, find the probability that a batch of 250 components contains between 1 and 4 (inclusive) defective components.
9.

Patients arrive at a hospital accident and emergency department at random at a rate of 6 per hour.
(a) Find the probability that, during any 90 minute period, the number of patients arriving at the hospital accident and emergency department is
(i) exactly 7
(ii) at least 10

A patient arrives at $11.30 \mathrm{a} . \mathrm{m}$.
(b) Find the probability that the next patient arrives before $11.45 \mathrm{a} . \mathrm{m}$.
(a) (i) $\mathrm{X}=$ number of patients arrive per hour. $\mathrm{X} \sim$ Poisson(6)
$P(X=7)=e^{-6} .6^{7} / 6!=$
(ii) $P(10 \leq X)=1-P(X<10)=1-P(X=0)-P(X=1) \ldots-P(X=9)=$
(b) Now the time frame is 15 min . So $Y=$ number of patients arrive per $15 \mathrm{~min} . Y \sim \operatorname{Poisson}(6 / 4)$ $P(Y=1)=$

In a village, power cuts occur randomly at a rate of 3 per year.
(a) Find the probability that in any given year there will be
(i) exactly 7 power cuts,
(ii) at least 4 power cuts.
(b) Use a suitable approximation to find the probability that in the next 10 years the number of power cuts will be less than 20

