Practice on probability distributions

1. X is a normally distributed variable with mean μ = 30 and standard deviation σ = 4. Find

a) P(x < 40) = P(x-30/4 < 40-30/4) = P(z < 2.5) = 1-P(z > 2.5) = 1-P(z < -2.5) = 1-0.0062

b) P(x > 21) = P(z>21-30/4) = P(z>-2.25) = 1-P(z<-2.25) = 1-0.0122

c) P(30 < x < 35) = P(30-30/4<z<35-30/4) = P(0<z<1.25) = P(z<1.25)-P(z<0) = 1-P(z>1.25) - 0.5

= 0.5-P(z<-1.25) = 0.5-0.1056

2. For a certain type of computers, the length of time between charges of the battery is normally distributed with a mean of 50 hours and a standard deviation of 15 hours. John owns one of these computers and wants to know the probability that the length of time will be between 50 and 70 hours.

X=battery life

P(50<z<70) = P(50-50/15<z<70-50/15) = P(0<z<1.33) = P(z<1.33) - P(z<0) = 1-P(z>1.33)-0.5

=0.5-P(z<-1.33) =0.5- 0.0918

3. Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Tom takes the test and scores 585. Will he be admitted to this university?

4. The time taken to assemble a car in a certain plant is a random variable having a normal distribution of 20 hours and a standard deviation of 2 hours. What is the probability that a car can be assembled at this plant in a period of time

a) less than 19.5 hours?

b) between 20 and 22 hours?

5. A large group of students took a test in Physics and the final grades have a mean of 70 and a standard deviation of 10. If we can approximate the distribution of these grades by a normal distribution, what percent of the students

a) scored higher than 80?

b) should pass the test (grades \geq 60)?

c) should fail the test (grades<60)?

	(
Number in the	\land	
table represents $P(Z \le z)$		
	z 0	

z	0.00	0.01	0.02	0.03	0.64	0.05	0.06	0.07	0.08	0.09
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0005	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0060	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1445	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2235	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

In a large restaurant an average of 3 out of every 5 customers ask for water with their meal.

A random sample of 10 customers is selected.

- (a) Find the probability that
 - (i) exactly 6 ask for water with their meal,
 - (ii) less than 9 ask for water with their meal.

(5)

A second random sample of 50 customers is selected.

(b) Find the smallest value of *n* such that

$$P(X \le n) \ge 0.9$$

where the random variable X represents the number of these customers who ask for water.

(3)

X=number of customers ask for water out of 10 customers

X follows a binomial distribution where success event is that a customer asks for a water

P(success)=3/5 thus X~Bin(10,3/5)

- a) I) P(X=6) = 10C6*(3/5)^6*(2/5)^4
 ii) P(X<9) = 1 P(X≥9) = 1 P(X=9) P(X=10) = 0.95
- b) $P(X<8) = 1 P(X\ge8) = 1 P(X=8) P(X=9) P(X=10) = 0.82$ Since P(X<8) < 0.9, n = 9 is the smallest number where $P(X<n) \le 0.9$.

7.

In a game, players select sticks at random from a box containing a large number of sticks of different lengths. The length, in cm, of a randomly chosen stick has a continuous uniform distribution over the interval [7, 10].

A stick is selected at random from the box.

(a) Find the probability that the stick is shorter than 9.5 cm.

(2)

(2)

(4)

To win a bag of sweets, a player must select 3 sticks and wins if the length of the longest stick is more than 9.5 cm.

(b) Find the probability of winning a bag of sweets.

To win a soft toy, a player must select 6 sticks and wins the toy if more than four of the sticks are shorter than 7.6 cm.

(c) Find the probability of winning a soft toy.

For (b), we can define a random variable (Y = number of sticks, out of 3, longer than 9.5) which follows a binomial distribution with success probability is P(X>9.5) and n=3. You have to calculate P(Y>0) = p(Y=0)

For (c), calculate P(X<7.6) and take it as the success probability for a new random variable (W = number of stick, out of 6, shorter than 7.6) which follows a binomial distribution with n = 6.Find P(W>4)

A factory produces components of which 1% are defective. The components are packed in boxes of 10. A box is selected at random.

(a) Find the probability that the box contains exactly one defective component.

(2)

(b) Find the probability that there are at least 2 defective components in the box.

(3)

(c) Using a suitable approximation, find the probability that a batch of 250 components contains between 1 and 4 (inclusive) defective components.

(4)

9.

Patients arrive at a hospital accident and emergency department at random at a rate of 6 per hour.

- (a) Find the probability that, during any 90 minute period, the number of patients arriving at the hospital accident and emergency department is
 - (i) exactly 7
 - (ii) at least 10

A patient arrives at 11.30 a.m.

(b) Find the probability that the next patient arrives before 11.45 a.m.

(3)

(5)

- (a) (i) X = number of patients arrive per hour. X ~ Poisson(6) $P(X=7) = e^{-6}.6^{7}/6! =$ (ii) $P(10 \le X) = 1 - P(X<10) = 1 - P(X=0) - P(X=1) - P(X=9) =$
- (b) Now the time frame is 15 min. So Y = number of patients arrive per 15 min. Y ~ Poisson(6/4) P(Y=1) =

In a village, power cuts occur randomly at a rate of 3 per year.

- (a) Find the probability that in any given year there will be
 - (i) exactly 7 power cuts,
 - (ii) at least 4 power cuts.

(5)

(b) Use a suitable approximation to find the probability that in the next 10 years the number of power cuts will be less than 20

(6)