Practice PMF, CDF and PDF

1. The random variable X has p.m.f as given by:

$$
f(X)= \begin{cases}0 & \text { if } x<4 \\ 0.1 & \text { if } x=4 \\ 0.3 & \text { if } x=5 \\ 0.3 & \text { if } x=6 \\ 0.2 & \text { if } x=8 \\ 0.1 & \text { if } x=9 \\ 0 & \text { if } x>9\end{cases}
$$

1. Calculate the probabilities $P(X \leq 6.5), P(X>8.1), P(5<X<8)$.
2. Calculate the c.d.f $F(x)$
3. Calculate $E[X\}$ and $\operatorname{Var}[X]$ (additional work)
4. Draw the p.m.f and c.d.f
5. For discrete random variable x, p.m.f is given by;

$$
P(X=x)= \begin{cases}k x & x=1,2,3,4,5 \\ k(10-x) & x=6,7,8,9\end{cases}
$$

1. Find the value of the constant k.
2. Find the probabilities $P(X=5), P(X=7)$, and $P(4<X \leq 7)$.
3. Find the c.d.f of X
4. Find the probabilities $P(X<3), P(X \geq 7)$ and $P(3 \leq X<7)$.
5. Draw the pmf and cdf.
6. A fair six-sided die has ' 1 ' on new face, ' 2 'on two of its faces and ' 3 ' on the remaining three faces. The die is thrown twice, and X is the random variable 'total score thrown'. Find
(a) The probability distribution of X
(b) The probability that total score is more than 4
(c) Find the c.d.f of X.
7. Let X be a continuous random variable whose probability density function is:

$$
f_{X}(x)= \begin{cases}0 & x<-1 \\ x+1 & -1 \leq x \leq 0 \\ 1-x & 0<x \leq 1 \\ 0 & x>1\end{cases}
$$

(a) Graph the probability density function $f x$ of X.
(b) Verify that fX is a valid probability density function.
(c) Find $\mathrm{P}(\mathrm{X}<-0.5)$ and $\mathrm{P}(-0.7<\mathrm{X} \leq 0.3)$.

Answers

1.
2. $P(X \leq 6.5)=0.7, P(X>8.1)=0.1, P(5<X<8)=0.3$.
3.

$$
F(X)=\left\{\begin{array}{ll}
0 & \text { if } x<4 \\
0.1 & \text { if } 4 \leq X<5 \\
0.4 & \text { if } 5 \leq X<6 \\
0.7 & \text { if } 6 \leq X<8 \\
0.9 & \text { if } 8 \leq X<9 \\
1.0 & \text { if } x \geq 9
\end{array} .\right.
$$

3. $E[X]=0.1 * 4+0.3 * 5+0.3 * 6+0.2 * 8+0.1 * 9=6.2$
4. $E\left[X^{2}\right]=0.1 * 16+0.3 * 25+0.3 * 36+0.2 * 64+0.1 * 81=40.8, \operatorname{Var}[X]=40.8-6.2^{2}=2.36$
