(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 22791, 511] NotebookOptionsPosition[ 22027, 487] NotebookOutlinePosition[ 22611, 509] CellTagsIndexPosition[ 22568, 506] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"hH", "=", RowBox[{"{", RowBox[{ "0", ",", "2", ",", "4", ",", "6", ",", "8", ",", "10", ",", "20", ",", "40", ",", "60", ",", "80", ",", "100", ",", "140", ",", "180", ",", "220", ",", "260", ",", "300", ",", "400", ",", "500", ",", "600", ",", "700"}], "}"}]}], ";"}], RowBox[{"(*", "Altitude", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"dD", "=", RowBox[{"{", RowBox[{ RowBox[{"1.23", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "3"}], ")"}]}]}], ",", RowBox[{"1.01", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "3"}], ")"}]}]}], ",", RowBox[{"8.19", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "4"}], ")"}]}]}], ",", RowBox[{"6.6", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "4"}], ")"}]}]}], ",", RowBox[{"5.26", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "4"}], ")"}]}]}], ",", RowBox[{"4.14", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "4"}], ")"}]}]}], ",", RowBox[{"8.89", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "5"}], ")"}]}]}], ",", RowBox[{"4", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "6"}], ")"}]}]}], ",", RowBox[{"3.06", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "7"}], ")"}]}]}], ",", RowBox[{"2", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "8"}], ")"}]}]}], ",", RowBox[{"4.97", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "10"}], ")"}]}]}], ",", RowBox[{"3.39", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "12"}], ")"}]}]}], ",", RowBox[{"5.86", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "13"}], ")"}]}]}], ",", RowBox[{"1.99", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "13"}], ")"}]}]}], ",", RowBox[{"8.04", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "14"}], ")"}]}]}], ",", RowBox[{"3.59", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "14"}], ")"}]}]}], ",", RowBox[{"6.5", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "15"}], ")"}]}]}], ",", RowBox[{"1.58", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "15"}], ")"}]}]}], ",", RowBox[{"4.64", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "16"}], ")"}]}]}], ",", RowBox[{"1.54", "*", RowBox[{"10", "^", RowBox[{"(", RowBox[{"-", "16"}], ")"}]}]}]}], "}"}]}], ";"}], RowBox[{"(*", "Density", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"yrho", "=", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{"hH", ",", "dD"}], "}"}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{"g1", "=", RowBox[{"ListPlot", "[", RowBox[{"yrho", ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"PointSize", "[", "0.02", "]"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"f", "=", RowBox[{"Fit", "[", RowBox[{"yrho", ",", RowBox[{"{", StyleBox[ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "h"}], "/", "8.4"}], "]"}], FontColor->RGBColor[1, 0, 0]], "}"}], ",", "h"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"g2", "=", RowBox[{"Plot", "[", RowBox[{"f", ",", RowBox[{"{", RowBox[{"h", ",", RowBox[{"hH", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"Last", "[", "hH", "]"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"PointSize", "[", "0.02", "]"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"{", RowBox[{"g1", ",", "g2"}], "}"}], "]"}]}], "Input", CellChangeTimes->{{3.7721513454637103`*^9, 3.7721516867979097`*^9}, 3.7721517806164746`*^9, {3.970055832930056*^9, 3.9700558334379063`*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"c041100f-232f-49b1-939c-6aa7520f8405"], Cell[BoxData[ RowBox[{"0.0012797236579521294`", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "0.11904761904761904`"}], " ", "h"}]]}]], "Output", CellChangeTimes->{ 3.772151419641841*^9, 3.77215146458552*^9, 3.772151520570818*^9, { 3.772151562534892*^9, 3.7721515900065403`*^9}, {3.7721516242330003`*^9, 3.772151689122314*^9}, 3.77215178361168*^9, 3.9700558345382957`*^9}, CellLabel->"Out[5]=",ExpressionUUID->"7e92b0db-c40a-4b7b-be79-eb2edad4c455"], Cell[BoxData[ GraphicsBox[{{{}, {RGBColor[1, 0, 0], PointSize[0.02], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQPX27oK/6mF2EO5DucKmO3sewKgfAGHWubJ0q7X vKB8CQeLFi3T6gWuUL6CA89zqbQMG0coX8VBy+xZ6RFFayjfxEHP/1rcL19x KN/Fofft1gXfj12wg/D9HOpy6qy5OqdA+SEOVj0Gj/oqQ6H8SIdtgk8bVwgz QvgNiQ77ctw/z7zYawvhpzm0H73HYDEvBcrPdri2nJtzN6MPhO9Q4KDCYmmZ t9AMwj9Q5DA5pMJyj6kKhM9Q6fDktXnSX9e/NhD19Q7ZefsPlZXdgfAPNDkE 96qxLd1+AMJ/0OqQ/bPgwQzDZTYA/OlWmw== "]]}, {{}, {}}}, {{{}, {}, TagBox[ {RGBColor[0, 0, 1], PointSize[0.02], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVVmc8Fm4XjqSMREayySg76zGe+36OvffMHo89opBV2aFChLJXQktZ/ZVR FEnKKCJSRlEyQjLf3i/n/K7fOdcZX65z+F1Pm7lT7tmzR+2f+b+PatoszFqd x4wsZhEpfyxIxd/UI50iX5P2617TYw+0IFVVsacfixwlGT5XYWX6aU66RxuX uy/yB2n4AMfQj3kzkpTK46K1iE2SwSMr4R02U1LFd8vr5nM7JLGu9Z6cShMS w+twjWFxClharCvZIJqQ4sOOKMnnU8F/1GG5laNGpMABM4GFCDpw/LJy/s+o PkmsuiS/QOYgDCYfOb4rok+aiV5kM5hjAKpSH79rYXokySOdCYPiTJBZWSjy RViXVN5BjjiZzwJPMp+nC9VrkSilrzQeCGMF7pjKl8ECWiSnvNqVz+ZsIBt/ P/dcpiaJ4wzl6VQ6dvjmosykFK1BusZb7PYjghPIDSeGZWLVSL9SOoufW3EB r95/J0tp1UgGa7/GbspwQ1rE6V+s2aqkA2+Qjc4cD3iZ9rI31wOJ1Oxf0S/O Dy8/UsUeFMekX2coNFty+aHVrchY0BuR8o9nTVYdEAD6uXkV4TtE0kbmU76Y KQGgzncQ9kcqpHofujypfEHg+6xO2ZqjSCLzFSlx0gqBRHdK2cQ6gXT4g8ww dZgQrHcHplI5EkiBqras4+bC4L2hZPpTVoEkxl6VdoXuOEybjVen0smRRt4Q JcPCj4NGwfo8Y4osKSnuXY/bt+OQrpZTO0QnS5r59YdGpf0E1FZ6fR5nlyGV vNCKn40Qgx+VSRduWUmTDIoa2FiWxWCn8FZyTZcUaS1MuAp7i4MmpYWD5Zwk yUCcujfTWgLsn/grPyBJkNYyXhzBclKgKcsQJyQpSirxk6/2uiMFDiF/5HZC T5CEy8wKdZmkQUyZVXG44zjpXdRz6eAkaTj2XP7IvtMiJGHpUstXoSfB25y9 tPKvIGmLa6TQ8dFJIPhpqPzwECT10Rz+/nv+JAjfnPCQHj5GipqMieBxl4Eo /zJK85cCpL5sl6Kz5rKQY6WwwNbLR6qIu/n9QJosHLeYOppow0eKCuw7Wdgt Cy6NQ5HWPbwkYT3Vji5VObC/LW8cy8pDitrmm+WWlgcHC4UvyfMcJLM5G5la X3mIeS5bJHKSgyQylB6pc1seRrwvaf4IP0rqr9nDcJZHARqXUwiWHOwkEfKE TBc9AZ7SN3ftZrCStkzYoxx0CPDxEqGUaYuF1I9MXizHEYCDZdFR3ZuFFHWk zZp7kwArVNkTmcbMpP7uoqgzs4pAf7Pt2pIOE+l249CL/UJKILLOpLHvHSMp qvzQoQJnJZBwCv/pYctIErlwsaRzSAliJ2rTA5cYSFEnnV5yvVQGDvFH/u6P 6EhmPDmHHlGogMKOzmbJIi1JhO6tjTZSAcaiD8yicrSk/in8I6hOBTTKCU+T uw+QRG7wMHaWEiHrG9NiozQ16REVX4r3CBHWjB4wlxbtIxGD+KnoDyPQ5w/s g8P7SCZ6gusmMQi8Q2j6VCipSGFbJyZGnDCsGKsX3aalJFF6i9mez8Ewc2Rf 18PrFKQr78UHed9iKLXRP9nKT0EquS/VRcYkuNNyPzJLYw/JvYbD5hwDgKwc 6jCy2sbVHpxZOqIAUoE8xReyt/AiF1f/US2Ae53GuddHN3FEMrfB0/MA/HOS +b/PbuBUVz6gmAdY/nrJSWrkDx5g5z/ff0AVLAxjGlTwH8z+lr+pTFAVqJLu 1KpXrOFSlWNyWvaqkMhHzfc5ZhU3sggfv/xaFQJZki5nkn/jrW5hd/tvqrCj QLPdOb2M1WJESiX2qsFU7/0zSj7LuGf+ONc7ZTW4EVCqfjFqCU+8FGNkrVaD Y7ykyTdJC1jovLjhzAs1mFSw2Fvc9Av7yEqkNH5RgwnPXKmGpXm8UiRJZXtU HXJNTn8QOv0THwg/uV6YpA6XnBRj4stmsaGUjHxguTpUvSx99HXzO86Yljmj 2qYO+lnx35NsvmMuM7mfk3/U4WB9CR/m+YZPihEmjntqQHrGdQqv4Skc+oXA vRGrARfL2qy4Tabw0xxF29eFGpAqSOw0fD2JtaiUB/0/aEBl2peEF6+/Ytsx YtcjTU3QerhO3bg8gaWfnbdYd9aE4/da5ukTJ/D+Wy0TKEoT6ut2Uzi5JnCd H/z9R4BbrcZHVYrH8cEtddHPvFpgffI8Te+dUTz1Ob5BUEULoiqlE902RnBT +ws1Hyst2Gk9keRjOII9LmvbrV7RAq1w3TG7PR9xG4f+FboNLaAe+3VwJPsD zt65zG7Kqg2RvitNVNQfsP/XnvJsaW3goJ6mehf2HnNUGzXze2rDrNPh7R9e g/isktkvwqA2vE8MkOgP7Md63JkR5xe0QW+bRSx7ow/zUQxSt9PqQFIgg4rJ pT7c02XJa6SqA65Hvx+1q3qHhW1OmZDv68DnAgHqO5y9eEsl91PVKx1w+/zz SrHtGzzAO+q1MKUDeJev07ewB0d/s4+J4NQFvf/WuA/IvcYfQ50fpSfpQquc u7zg9S5cY1uCP5Tpwu7m/sSra504EX/t5mzVhe6HHSqz9p1Yhpo8WbGqCz34 LYlZ/iW+kuXJ0uyqB2fl4fh1xg7sGl5ZTHlBD0yof4f/SmvHig6z4jo39UDd VLok5nA7nhb01Rx4qwfM6Y/N9vA/x7guIHSWqA9aFF/qiC5tmOXGA0opG30o T/tZF7DYin9ELqYGn9WH2RNadRXHWvEN9TO3d6v0Ya7gfrPNzWa81B8yzHrE AJ56CpTotDThl633+O/IGcB7v8bgSKomnH932gfMDKArr0TkP+P/sFai5bbP VQOocaTbfrXSiPOV5AXa9hoC8fHF5YqQehwk7O9ryW8I1WmNhmkTdViL+Vbd HDaE/GWWC3HGdXjpJ4s2a4QhGKa7P+BVqsVaxSu+PouG0LDexqeu+BBzXRWv 3z1oBCRZPovithq8FE7euS5mBMkty/VEgxqcbz6Y3uphBD/oq988+ngfL1HX 1bOMGcGbQSXGktI7+OXvHztVG0awxRAaWPK1GudPHNMhsRvDTB5Ny5BINdZq yhzxNjeGcllvI6tnlTjf/+xuyytjeNBwkP6reAU+Y3tHx+KbMexw/3Hry7iF y8uWuoIpTaDXyJ17Yasch6efOEzLZwJyWfYGamNlWNDnZrmcnQmEfFxu0Htd glOd5XV3vU0grXXau9q4BP+16pt/FWYCbYmaVO5DxbhXnYbglG0CtSqbt7m+ FOFw7vBXyX0m0C35Ri4nNR9PMbMGWEyYgKfhLEG6Kw8b0T48zLtgAu5+27fE 9udhwT/f7eroTcF/REmw/vpN3PvO5te4tik8W6GrUJrLxkqdKxlVVqYQVSqQ sE8/G5c3pxOC3U3BQY8j/FhNFg6v7oqmiTMFK6l+h/HE61gwXpFZrsUUEh/e q1Vyy8BRI9RUlD2mILAr6jv14xoelH6/8vajKby/dyUn69w1HD8W9MF31RTy KOc0m3PS8aTCnZtl4mZgLpfdI798FStfDU8JUjYD7dwUtjGpqzhjUjuSpGMG x5eFqoLOXMFq6VP2o25mEHUj9drkvsu4dJabjznPDGzIt5kKXJPwBukn45dK M6C70WZi13EJm2U3UTxoMANbi7FiLtFLmFLdelKv3wwW3u2sAUUidslPr4il MYed0iF259E4/HjZMcfkiPm/ehIVMbZxmFFXIolHyByOKJIuf/sUi9tWX3k3 gTnQR4geEf8Rg/mM90osnzOHk6mDlZ5i0TjsVh93W4I5MK4ZzP2Kv4jfbRYx pGaaw8R/ZlnOjy/g6Eri4okH5lCY+2uyRvI8/kwRWusyYw7pw9FhwZYRWMFG o1xqxRzcJw4ZXq0Ox6n3D2dtU1jA3g90mpt7wzG2exB6k9sChvS4xzzaz+HC uu9KfRYWUKx+VTcrKASv0TaKFrlawIJMbK7PTDA2ckng9A+0gMno/eydjsF4 56DA9oErFiDL7p/TdOosdvS0a4N2C3C/qG8sGRqEG5pPPGTos4BSakGfUaog zMCyXvJp3AIUyIt/PbMDcUvb9biwDQugiStpqo47jbk5erVqTlrClrF40vFA P7yycoStAizh6vvfDvaVvrjnrct0nrEl7Otk+0E344MjElbjLvlbgoBwB79m kDceXuR65lhlCQr+sdai7R645rVHusVjS1B3/BWCj3ngSxU1TnqdlsByPuBY wyV3rGCvsSM/bQk/nkres3Qg4+udvioH+a0AXc3mF1V0xX6l9bR7pa3AJtfs 2InHLlj9/O7HdWwF+YSNkDsqLnhZJjNsyt4KpMzFKIcNnLFxYVP9kxtWQOtM lZUq6oCFw6kSHt62gis6zh/KHezxjrmRxe0GK+hI6Wm1zbbDd2m+LmcMWkHp CnP2AXZbTBtCI+3DaA2pLoy19jbW+Kux+a4TrzUonyvIs6mzwv+JFvRaSlpD bl7F0CCLFfaakPZXNbAGKuipfPfVAr/Qt6lmT7KG8tPqaVkPzHC+cGk4Q441 FM9dSDMUN8PBFD91qCqswU+S9K3orikWaLz4baHdGtJUOhkeNJrgaIHbgp27 1pDzKNytadYQ22wv/n7KYANULk1J144YYqlh5fZH3DZw4qGZjIS+AR6/2utS qGIDb79QHGVq18Mqf1cLQ87ZwDTvp3XnJW18eJAU4JtoA7xqlO9P6GrjufvJ yCXLBu5cz01Iv6WFb5C5PxnU2oALl9HlBl9NvPZW46jggg248fk3HRJVx9nP JBkHt23gS3eL4dAtNaxQy74/nv4UhEU0c0oJqeHQ7J8rkydOwfZelyYJSVW8 Zn/9XRn5FMjI+rxoeYNxttGFTvOzp2C+fSJH8S/CCuDVsjf2FBjraz7wE0U4 9BjxrlvRKRi7GXfXo0AFr81OXjo2cgpy1RR/pj9TxNmjby4MfD8FHYGFnB1s iljhTWNI3J9TUHBz6eG1QAIOrbnsNsliC3HjH6fPn1TAa6GypDJjWyh6SDVo OS2Ls724FcwdbUGPksmGyV4WK9jul9jrbwv25pyzFz/I4FA0yuGWYgsjojrd jB9O4rW9cWsCL2wh91K7y/MNKZy96jffP2ALe4qNfHh5pLDCN6up2K+2YLUs WROgLYlDu0X7v+7aQmah6yrcEcdr6f33SpXtoLC/uS6y9gTOjn1abqZrB287 bg2eoDyBFYIr8iht7GBJYMiqyPI4DrWOSHYNsQMh1dQ4B1oRvMYt4C5QYwcP usLWn90WxNmH6O37W+zA31eJE44KYgWKNbPYN//wp7SgrNRjOHTqFXydswMK WvEz9vECeK06iKtUyB4W3IbbSm7y4ex8O2YzOXt4svSbyCHChxVSNWkp1e1B fain2/Q0Lw4NOrru4mwPbxT0SV7t3PgP4dkAf549KDI/iSm9z4Hjk8fY3lfa g2W9xeZzSg58ePTvqaQGexiVfpepYHcUi1+QmfjVZw/24288KtnZsXNH2c8n BxxgLa7x2fvnrHietU3qNJsDtACFSpUCK47w/HRGQNABegd9S/feZ8FZtKx/ k0gOwPTfkfnlCmbcbZK4zyrUASg2PsS5tjJh69JSHZp4B7A58tyI0ZAJT/1u ufz0mgN8K569WDjGiHez/zAdu+cAh84oBRzez4jlxrx4Ficd4O2dW+2flunx M8kEl7IlB9i/rlrnpkiPjaJLyq12//VfZX6bF0uHvY+NiDZzOP67LwPOtwVp caG3PiHF1BFkzlan0Ofvx2JPPCOQkyMc1Rvr/bN3P35MH9+86OcIZCZCXcNp ajzw4Km6dZIjjMlTexma7cMH1iRMBFsdQeu2U4SZ6l6cpa2XOdTzD/8IUdV7 QYkFbnp8SBlxhCquM1vOBpQYEYvsl1YdQdL6tXueGwU+E8vo3SLuBGtq9dnO Xrtod0D8bpCyE8w16cYyFu6gK0K6C4I6TsBJiiweGt5Gt7tiQi67OcHCmVbu Ew5b6BPD7xibXCcgBDS9Cin4i7ydD72gq3SCwEPDcyHr62jtodiB1noneDq2 fyrfeh0xWZJThfqcYLqmgmmV/w8qe+Nj+HevM7j6kHdop1ZQ9WOFcQ86Z4jI OuWrbbaCasooTw8edoafpuszUR2/0dPw3PQH/M5wvm94lly3jD4IdQ+4k5xB 03DU07h1EX1izCYPaDlDtD0tVYjeIvq66bIKRs6AE6x+ZD5cQAt9f9m4HJwh I0CS33x7Hh24cMK2P8IZjhQwWMx/nEMM3qtzpFhnCL5WSpnJM4dYLZ5F3kt2 hirGll/mXrNIQPRUQdINZ4j9Gfz7Ju13pPIhaQI3/Jsnp/bFlcRppPbMIuhu s/O/f8jM1G5xCunc5aPkePEvv0R8QNVxClnEPj62OuAMQnZXYFpzEgVIfve4 s+QMiqJ2n7NUv6Dgo3V/2P86w3Uf3ouSryZQJFV0UuIeF9APa1Q+ZDGBkkaO VLsccoEvMQuc+TPjqCRRe/6IhAvMcFu87KkeRZVBzBcS5FyA5D506NnsCLpv /5nht4oLGMa0Gq9LjKAmmXPSvXoukGSY+bHgxTAaHK84G+/lAk3X5O/uSHxA I6/OUC2fdoH9eyS/EjPfoy91OMvpnAt8y7GZebQ1iH6lfGhQTnQBxs10/77R AbSfQL2xWOYC8SZHn/Z19iEGgf4UxzsusOia2vZMvw+xHCzk7HnkAs8/Lnky D7xDfJPy6PYzF3jht9q1+eEtUk5zj3b47AJuUzFU+2J7EKFar9FgxgXuOXLe Fel6jeReSP1SmXeBnbJGHmrm10hy868dx+Y//qHOJ5ENr5CAZyphiM0VPNZc uDlOdiLe2LMBL7ldQeR9evH0zZeIq8DmVr2gK/yMHl5NoX6J2AYEmK/LuAKu 5zXcnetANKTGXyZGrgAF1cx/xp4jatt8IbB0hVW1c6Mrrs8RZUiMvZS9K9A4 bRSx/HiGtqr1uw/6uMICL2nJi+oZWmSbuNWd4Ap+yuGPrj1qQfMnX3z674or NGd/q/Wfa0ZzBtXMVZmuQFJ7lekq0oymYoNjLpW4woFrgx8P1zxBw78OOGg0 /4u/esLL+/cxek/zK1O2wxXa570uGlo9Rv2CA90Cr12BxdvKu6SxEfXYFihS fHSFDaKal1FiA2p7eZKlZcUVihppLi6b1KHmL2z69zZdgbVmNO18Ty1q2tqM yad0A/K59wpe+rWoTublQgSjG0jvFRijMn+EKgttXxPE3eCXsYci26UadOs/ EqWIrBv48vtetuCsQaWDgkpsym7Q1jY7WEp+gPJpFypWtN3ABm06Xnx3D6WH xsU+dHMDD/PDg6JT1ejqNa//in3c4K73pdohuWqUctdwMS3IDejV1So2k6tQ /NcjjgEX3eBJBDWTvGolOmd0V0kszw2cH75K8Ju4hYaDXeL/lLgBw1K7bbrF LaScx/a2vdINWr/tmMv0lKOtb9Fk+wY34A5JW8x5UYZiYyzTrva5gTbPrZXc 8RI0eZt25NSwGxg1n/5j71eCNHpbBYU/u4HCfU3rv1vFaD+naFPLTzdQPBV1 L0y4GF2p25la2E8GtpkOfseTBWh+pFbqKQMZ/HpL9j4NzUdGFN4RSaxk2HUs YGxvy0NMRgOH+I+RQZtKXNnKNRdlf7utbIbJ0Lp3yzxqOAf9OeiQwKP5j29n XkoDOchG7vC7OX0yhNJ+T3W/k404Y6Lc406RwS54N/b41SxUzGGaXhdMBiNX zddWEZmIQpV6NDqSDG86FlPebWcgV88nQoaxZPhMQUX2iM9AQnVCT6bTyOAw qmaXk3sNVRtuTLPdIcNHv+nre/rTEF3wA+nJh2QwiPRWyaBOQ3655MgHj8ng a7kQqAipSOpbL6POSzLsey4UoPr8CqqLLlMJ/0KGNqkAtbntZMR62yZR8zsZ 2t9X7bZYJ6PQNwf7mBbI8DPQjbmpPgkpcYR5VG+RgW/L9NV/5y+hllqDa6NH 3GGZbtOXXyUB8Y1QfLrN4w4BoY477rXxKGZPo3CwkDtofhIyZZCKRxqG/E/p Zd3B78o4s5x0HHo1szqDjNzBTeJbcbZ1DPJ5+52v0NIdgNL2kN/naET/eNR2 x94dLtIRBGN9opFR8rPeFl93+FALARIsF1G/2NUGUrI7CH6fWeX9GInOskQv FqW7w6dHOSdPsEcilu0zontuuIOqdU20r30Esuq1KWyrcIf9e++n062EoZFA wUTVDndgDDjossc+FEWeOtJW8todrnq8+8H0LARxqdFuUAy4gwFFBYWlaAhy ZF70f/7FHQyT5+y3DgSjr/VPLNV33WF2ofZ6/+8gFFd4P62M2gPC2UlB/ueC kOClkld7GTxAGF1Q9dgJRB42l1AHlweU97rQs7IForkNMyFNZQ+wubTQTjHo hy5PajrdUvWA7tFzN4HeD4n3KN7cp+sB9EoH0r/p+qKAAp6DL6094I55zIGP g95omTS3ohXiAVKTDQmnhTxR5vExydtRHkCwZTI4mOCB5Jjeee2P94DLlH/J lLPuKPRr/afODA9QaO+mj2wmo434mA6dGg9QHbeiSc1yRXn+wTuVjR5QUiWh 0sXiiohWnoo0rR4Q1L9VfyHHBV0QMbz76o0HuEi2Z+y57Ywou9mv6/3wgJaM 2dbGIQdU9oiut3rZAz52iFIuHHBAGnk7++k2PMDSe4OjlWSPEv2mIl8f8IRJ ubwnac22iPZQjZuBsCesh+k5ra5ao1KRp+qSEp5wwV2LY8bWGilB1zFGOU/Y 9aHRfd5uhbyCJiYHVD3haBSH1HCxJeocYCTbOXhC2fwhh9EEc+T4k0sDkT3h DpSoxu83R2tUJwR5fT0hYEOp1fGKGRJWUJ36GuYJeonqTlZFpij+RhDZ57on xA+I2tu9M0ZcD89rGOR5wuNyasoISmNU+ypZULLUEwxN6bd7lIzQ142SqaUH nkAbZMmS0miAVB36yeGvPeHA+Kb0zA9dNBwyrmHX7wlXozSqhTV0UWDqnCD6 6AmkIZa68mIdVNxKOb3nmyc8nfDx+OmujXb4Zd2TKL2gbsy1dJBHE2UrkzR9 aLyAxT55WjhbA0mY6wsZMHrBt9ucVfOMGsg+3m36EI8X/Jl17L/IqI6ezGS6 5yh5QdU3ukBPeVVktlukGQ5eICxRZ077EtDckbtCdtpe4HeWdfr8KUAcuh3T PJZeUCh7xpibiYTC7qy4VwR6Qcnwoy+ztETE2LFHK+mcF7CyuOsHWqqg25/o hX0ueAFP3EWOq+XK6MNBoRmJK16wG8Yzy2yihOQDLT3qb3sBr3WUuuZHBdST 5KKVc98L4puCzbw0FRC5xF84vN4LvE+9UNOpl0fX+xNmiO1e4Nx8rXS8SA4t yzV4dIx7gQj9eut0gQzqPrRHQXnm374eC5+DOGVQyZzuvpp5L3jc7s+dnn8S mRSPleVtecEQQ1oKb5U0uke378sZDm8YTw1wW+iTQPEzRjXf+b3htUx1wMYe CWT/7MZFxxPekBgzVtMsL45oz4nz6Cl6/9OnqNI3D0SR11dzO34rb3D0No5c +SKCoLlANMfBG5I9wDdXWQQdufHtL727NzxgunngfY4wemkYeWP9rDeknvHp THISQsf+K33/9po3KE1euVHAdwxtZP4s17zpDS1Ha1uycgVQf4BC8JNib9jH NMqixC6AogW7D99+4A09XG+lOXn40XjakvGFN96QLsypaFrGgxp8VHhXBr0h +FwIU0kPN7qqmfDL+5M39E126/VtciHiJvtVyx//5gl+oS3ly4lu/pMKcRof uKbc2nwrmR0FqqbcLGX0gb4xzYK6sSNIh2vQi53dB1wuS1qEKRxBa32e+6lE fODl11qNvFVWZIHSNEY1fACJyev8qGBGe38LTL4094GnJFMLrZzD6FFlQ8wj Vx8I7mdDBtlM6BDLeEtytA/sVeFTCYo4hFpeBTmEpPkAbYH4Q/POg8jv4r4t 58J/2GymuE6MHnXPiSspPvUBjoCR4EV5GqTW6Lw71u0D++dSnlV+3o/+i7v+ Iu6jD8jyPONOyqNGlVxbpm/XfMDa+pTWgiYV4p2VYg/Z5wvuHCcf1MjsRdn1 buMcLL7w03iDmk6SEiUYvfbxOOkL3BR0OlGGe9AWx640PfjCnFF8jv7EDjH4 m8yfh0a+0F8528SOtomu0blx276+cLzPW5OguEEcMejVLYvwhWORZRRocJ1o epSSUTfZF/gkVV4ci/tDhEfe+dcrfMGOrbShmHWVKKXfd3yi3RfO9nd56n1f JvJMKdaLffGFDoM9kdEri0T688Wq53Z8gSuL/lyZ1y/iJuuB3uecfnC/bZRh UOMHce7+aVsGJT8oYVaRogr+ThzWHpo5ZeUHwp9oZ0vmp4mdE/jsrbN+kBKT 8WG7apLYEF6xu5juB9QPrBplS78QL/afEVS/6wflTvrZH0c/E3XESLpZnX7g QJDtLer8RDwcTxfw7asfVCSy1WbufiSOfhrKUNrxg7J9oQk2UUPEgNTAT2Ny /jAl9ZvLSXSAuAdohGN9/UF6Wo36gfZbYsZSyWnhUn/gZaOIqk58RRQsU/6v e9gf+DPozfIHO4hW//mrFX32h1xBq9F3Rh3EpLfFr8/O+EM2Mfi5c087cX6T epxrxR/eFD1bJfY9JzZYDFCePhQAU/t+Xrm720bUpfYzYNYKgM8vrr+2b3lC 9LkaPpD7NACCC88ZvPn4kJjCcslWQPY02LOVXctdryBu/fzTn6J8GroiJRJb bSqIAS+89H+rnobOBxWzxOZbRLNQPWKHyWmAw7IjXRnlRI7hgzweAadhxmCC QONfSryTd/1LVdVpoDKocXRPKyB6MJnWsTMGQuu1wUt792USc1mz268yB0JE vOId++QMYu/R0X7KI4FQqLdd+5Exg0gQcF/6yR0IHwV/m/w6fo14QDZc8plY IFRmv6XrWUsl3rEoqfTWDgR1I/HUM3LJxMWcpfymC4FQFTwV4F0bTYzkyUiw nw+EmkfMp+ws/IlJZy9jnrEguBGDOunq1Ym88olBsV1n4Pw5a/JNO05i8mqF J2f5Wcg2PDblb7eq8mP7oqZMRjBwxW/OcR96o8K37+LM+cAQUPeaC6EgVqh8 DrtI4acXCicL02e2M2JUsuUUqYYVzoGEyNn+EXkbFf4Ftu4w5jDwIE93hzyT USlfuncuhzIcosmzyqzmNCoPnbWKbObD4ROtlr551Rfla71UKUZdEeBk26vR UfdE2Ts+0v55fSQ422SdICxmKP8TsWWfzChwm/tS5Mvjr6xn20DR4Hceyvv1 NPfwaSufa6f/e8HmAhBcj6mzU/Aph4kl10bJXYRFnXQ6sbl1pf/mx0WjmKLB VmFPUfDMOyVezSsOg9HR8PV1l5/Tqyql12bKb7bno6EAzllHm8UrnY3vkPYg xwBrhlIKw5ydUnz9l9Xv/TGg1vRj5UOavNI12tH71XqxwFsxsK2+/6DSJOv7 ctQWC3mjnJ6npaYUi/hct+Yk4uDysuyb0oxWRWvj19pD5XGAGXOc7sVnKYad 71wZY46H7H6tk5kXAhU/u3SM10fHwx+H47ZSvHqKaj4FT3vW4uGx8kZ1LLWA IsMZmq1tcgJkHA9lqdjYJNRYbe6d80iAW90s72ukNwlmKvN0H7wSQIXDzNbf b4OQTdXHed8vAYwsbwfZrKwTeHNuqDgGJwDv3QChVtU1gvRTkciWuARIf6nK c6ZuiWBOrbVxoTQB9mhfohH1miGszREofcsTYKDP0dP/5TThxtsTtNYVCVAc wEyAE9OETzcOckhVJ8BmiEcA09YkgSz2XunzwwQgq3Rdpxj4Qgg1IYeTniXA B31Jh3S7TwR2easYsfYEyOUYTv+cOkpoOqqTfORFAjzdn6e20jlC2PkqdnOh KwHOB/2q6tL7SLgU8vtx0bsEKP96Cw2lfiCI2k63Xe5PgHy1iYC9P98TevBQ 17nBBPhdyL700vA9gfHAk2Hj4QQgDJ7QTecZJDz6eXdCZSQB5jRzC62uDhAs +gq/i3xKgAjrHwryewYIa/Xpi8zjCfDg6fU4hnP9hBu5seu7nxOAttHj9Yul PsL/AOUwZEI= "]]}, Annotation[#, "Charting`Private`Tag$4231#1"]& ]}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{231.33333333333246`, Automatic}, Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 700.}, {0, 0.00123}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.772151419641841*^9, 3.77215146458552*^9, 3.772151520570818*^9, { 3.772151562534892*^9, 3.7721515900065403`*^9}, {3.7721516242330003`*^9, 3.772151689122314*^9}, 3.77215178361168*^9, 3.9700558346177416`*^9}, CellLabel->"Out[7]=",ExpressionUUID->"2759e5e7-dee2-4672-857e-099d0c15b605"] }, Open ]] }, WindowSize->{951., 469.75}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{32000, 32000}, PrintingOptions->{"Magnification"->1., "PaperOrientation"->"Portrait", "PaperSize"->{612, 792}}, Magnification:>1.3 Inherited, FrontEndVersion->"13.2 for Microsoft Windows (64-bit) (January 30, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"14eb1f53-561a-4bab-a1dd-9530cad4867d" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 4604, 142, 309, "Input",ExpressionUUID->"c041100f-232f-49b1-939c-6aa7520f8405"], Cell[5187, 166, 487, 9, 43, "Output",ExpressionUUID->"7e92b0db-c40a-4b7b-be79-eb2edad4c455"], Cell[5677, 177, 16334, 307, 217, "Output",ExpressionUUID->"2759e5e7-dee2-4672-857e-099d0c15b605"] }, Open ]] } ] *)