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Expectable Crisis of Radio Wave Communication
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Expectable Crisis of Radio Wave Communication

A Sudden Ionospheric Disturbances (SID)

A solar flare transmits UV and X-ray radiation that rapidly reaches the

Ea IS is take about 8.5 min). This produces abnormally high ionization
in the| D-region causing increased absorption of MF, HF and VHF
frequencies and also increased reflection of LF and VLF. It can cause a
complete and sudden loss of HF propagation. This can only occur on the
sunlit side of the Earth and is most frequent at the maximum of the sunspot
cycle.
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Expectable Crisis of Radio Wave Communication

A Ionospheric Storms

Thes‘eLmay last for several days and are caused by terms of charged particles
(protons and electrons). They may take one or two days to reach the
Earth and are deflected by the Earth’s magnetic field towards the auroral
zones. The cause increased ionization in the D-region and an expansion
and diffusion of the F2-layer, causing decreased critical frequencies and
higher heights. Again ionospheric storms are most severe at solar maximum
but are, perhaps, more significant at solar minimum.

Electron Column Density 100Km to 400Km {(m-2)
UT = 12h 0¢0m




Expectable Crisis of Radio Wave Communication
A Polar Cap Absorption (CPA)

Therelare infrequent but major disturbances that occur throughout the polar
regions. They are caused by high energy protons that are guided by the
earth’s magnetic field towards the polar regions. These may take from 15
minutes to 3 hours to reach the Earth from the Sun. These are called polar
cap absorption events or solar proton events (SPE). They cause a
considerable increase in D-layer ionization resulting in strong HF and VHF
absorption, blacking out HF communication in the polar regions for up to a
day. The SPE itself may last for up to a week or more. They are almost
always preceded by a major flare and occur most often at a sunspot
maxima.
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A Polarization

Wh(e%iradio wave travels through the ionosphere its Electric Field impacts
an osdillatory motion on the electrons. These re-radiate modifying the
velocity of the radio wave and if the electron concentration is changing,
refracting the wave back towards the Earth, if its frequency is not too
high. The Earth’s magnetic field modifies the oscillatory motion of the
electrons causing them to move in complicated orbits.

Their re-radiation is not, generally, in the same
polarization. The polarization changes continuously
as the wave travels through the ionosphere. It
becomes split into two components; the ordinary
wave and the extraordinary wave. The o-wave
behaves practically the same as if the magnetic field
was not present. This effect is most apparent for
waves that have traveled in the upper F-region.
The layer appears to split as the o-wave and x-
wave propagate with slightly different delays.
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A Short Wave Fadeout (SWF)

During a solar flare, absorption of short wave by the D-region starts to
arise strongly. As a result of it, Short Wave transmission can be completely

terminated. This is known as the "SW fadeout”. Mainly the lower
frequencies in the SW band are heavily affected.

Reflection of SW during a SWF is expected to be completely vanished. But
under any circumstance, ground waves are not being interrupted and
received as usually by the receiver. This is called as the “Short wave

Backout”
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Expectable Crisis of Radio Wave Communication
A Sudden Enhancement of Atmosphere

Molecular density (ions and electrons) of the D-region is tends to be high
during a solar flare. Thus, the lower frequency waves starts to reflect.

Randomly this D-region can be expanded as well. In such situations, one
can be recognize a lower layer of the D-region. This layer is known as the
Echo Surface. An increasing trend of SW can seen as a result of the
formation of this Echo Surface. This phenomena is known as Sudden

Enhancement of Atmosphere.
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A Doppler Shift of the Ionospheric Layers
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When a solar flare has occurred, highs of the
ionospherics D, E and F are starts to decrease. OR lonosphare
one can say, they move downwards. This movement is
called the Doppler Shift of the Ionospheric Layers.
Associated with this event, a shift in frequencies at
hertz level can also be observed. This is known as the
“Sudden Frequency Deviation” (SFD)
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A Doppler Shift of the Ionospheric Layers
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Thus the phase of the wave is supposed to be
shifted, if a higher wave length is being used.
This is effected only the low frequencies (higher
wave lengths)

If a radio wave being send towards the Earth
surface from a satellite, ionosphere absorb
the higher frequencies specially during a
solar flares. As a result of it, noises
associate with such waves are absorbed by
the ionosphere, which is an advantage for
the radio communication.
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A Sudden Cosmic Noise Absorption

Noisjs added by the atmosphere for the SW high frequency radio
waves, during a solar flare are absorbed by the peaks of the atmosphere.
This is known as the sudden cosmic noise absorption.

In generally, we send high frequency short waves from the top side of the
ionosphere towards the surface of the Earth, such waves are suppose to
exhibit following properties,

1. wave should be strong enough,

2. it should focused towards the corresponding receiver.




Noises added by the atmosphere for the SW high frequency radio waves; absorbed
by the peaks of the atmosphere! (Noises are high frequencies)
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A Sudden Cosmic Noise Absorption

In generally, we send high frequency short waves from the top side of the
ionosphere towards the surface of the Earth, such waves are suppose to
exhibit following properties,

1. wave should be strong enough,

2. it should focused towards the corresponding receiver.

Basically two main advantages can be observed with such focusing
antennas.

« Due to the gain of the antenna, station can receive signals with extra
strength.

« The chances of affecting the signal by the background noise is essentially
small as the signal is focused in to a narrow direction.
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0 Meteor Scattering

Meteor scattering relies on reflecting
radio‘()Ivaes off the intensely ionized
columns of air generated by meteors.
While this mode is very short duration,
often only from a fraction of second to
couple of seconds per event, digital
meteor burst communications remote
stations to communicate to a station
that may be hundreds of miles up to
over thousands of miles away,
without the expense required for a
satellite link. This mode is most
generally useful on VHF frequencies
between 30 MHz and 250 MHz.

Meteor Trail

~ ~1000 - 2000Km
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Intenge columns of Auroral ionization at 100 km altitudes within the auroral
oval reflect radio waves, perhaps most notably on HF and VHF. The
reflection is angle sensitive-incident ray vs. magnetic field line of the column
must be very close to right-angle. Random motion of electrons spiraling
around the field lines create a Doppler-spread that broadens the spectra of
the emission to more or less noise-like-depending on how high radio
frequency is used. The radio-auroras are observed mostly at high latitudes
and rarely extend down to middle latitudes.

station A station B
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o Sporadic — E (Es) Propagation

Sporadic — E Propagation can be observed on HF and VHF bands. It
must not be confused with ordinary HF with E-layer propagation.
Sporadic — E at mid latitudes occurs mostly during summer season, from
May to August in the northern hemisphere and from November to February
in the southern hemisphere. There is no signal cause for this mysterious
propagation mode. The reflection takes place in a thin sheet of ionization
around 90 km height. The ionization patches drift westwards at a speed of
few thousand kilo meters per hour.

peak density

Es cloud
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0 Tropospheric Scattering

At VHF and higher frequencies, small variations (turbulence) in the density
of thelatmosphere at a height of around 10 km can scatter some of the
normally line-of-sight beam of radio frequency energy back toward the
ground, allowing over-the-horizon communication between stations as far as
800 km apart. The military developed the White Alice Communication
System covering all of Alaska, using this Tropospheric Scattering principle.
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Expectable Crisis of Radio Wave Communication

o Tropospheric Ducting
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Sudden changes in the atmosphere’s vertical moisture content and
temperature profiles can on random occasions make microwave and UHF &
VHF signals propagate hundreds of kilometers up to about two thousands

of kilometers and for ducting mode even far their-beyond the normal radio
horizon.
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o Tropospheric Ducting

| Warm Air Layer

j Cool Air Layer
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The inversion layer is mostly observed over high pressure regions, but there
are several tropospheric weather conditions which create these randomly
occurring propagation modes. Inversion layer’s altitude for non-ducting is
typically found between 100 m to about 1 km and for ducting about 500
m to 3 km, and the duration of the events are typically from several hours
up to several days. Higher frequencies experience the most dramatic
increase of signal strengths, while on low-VHF and HF the effect is
negligible. Propagation path attenuation may be below free-space loss.
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o Tropospheric Delay

This_is a source of error in radio ranging techniques, such as the
Global Positioning System (GPS)
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0 Rain Scattering

Rain $cattering is purely a
microwave propagation mode and is
best observed around 10 GHz, but
extends down to a few gigahertz,
the limit being the size of the
scattering particle size vs.
wavelength. This mode scatters
signals mostly forwards and
backwards when using horizontal
polarization and side-scattering with
vertical polarization. Forward-
scattering typically yields (outputs)
propagation range of 800 km.
Scattering from snow flakes (chips)
and ice pellets (pills) also occurs,
but scattering from ice without
watery surface is less effective.
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Aero;EJane Scattering (or most often reflection) is observed on VHF
through microwave and besides (also) back-scattering, yields momentary
propagation up to 500 km even in a mountain-type terrain (land space).
The most common back-scatter application is air-traffic radar and

biostatic forward-scatter guided-missile and aero-plane detecting
trip-wire radar and the US space radar.

Scattering from aircraft
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Lightning Scattering has sometimes been observed on VHF and UHF over
distanmce of about 500 km. The hot lightning channel scatters radio
waves for a fraction of a second. The RF noise burst (explosion) from
the lightning makes the initial part of the open channel unusable and the
ionization disappears soon because if combination at low altitude high
atmospheric pressure. Although the hot lightning channel is briefly
observable with microwave radar, this mode has no practical use for
communication.
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Th ife-Edge Diffraction is the propagation mode where radio
waves are bent around sharp edges. For example, this mode is used to
send radio signals over a mountain range when a line-of-signal path is not
available. However, the angle can not be too sharp or the signal will not
diffract. The diffraction mode requires increased signal strength, so

higher power or better antennas will be needed than for an equivalent line-
of-signal path.

Diffracted path
Antenna Antenna
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o Knife-Edge Diffraction

Ceometric
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small obstacles are also
important at high frequencies.

Signals for urban cellular telephony tend to be dominated by ground-plane
effects as they travel over the rooftops of the urban environment. They
then diffract over roof edges into the street, where multi-path propagation,
absorption and diffraction phenomena dominate.
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Absorption

+

Low frequency radio waves travel easily through brick and stone
and VLF even penetrates sea-water. As the frequency rises,
absorption effects become more important. At micro-wave or higher
frequencies , absorption by molecular resonance in the atmosphere (mostly
water/water-vapor, and oxygen) is a major factor in radio propagation.

For example, in the 58 — 60 GHz
band there is a major absorption
peak which makes this band
useless for long distance use.
This phenomenon was first
discovered during radar research in
world war II.
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Absorption

Beyond around 400 GHz, the Earth’s atmosphere blocks some segments of
spectra while still passes some this is true up to UV light, which is blocked
by ozone, but Visible Light and some of near infrared is transmitted.

Heavy rain and snow also affect
microwave reception.




Thank You !
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