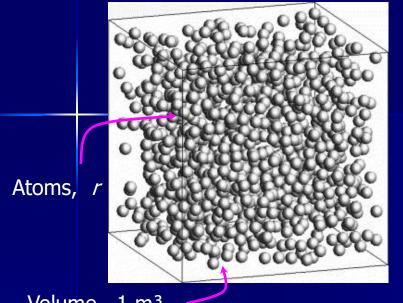

Space & Atmospheric Physics

Space & Atmospheric Physics

Lecture – 05



Earth Atmosphere

Retaining of Gases in the Earth Major / Minor constituents Barometric Equation Scale Height Atmospheric Regions Temperature Profiles Retaining of Gases Number Density Profiles

Density of the Atoms

Volume, 1 m³

Assume there are *r* atoms in this volume

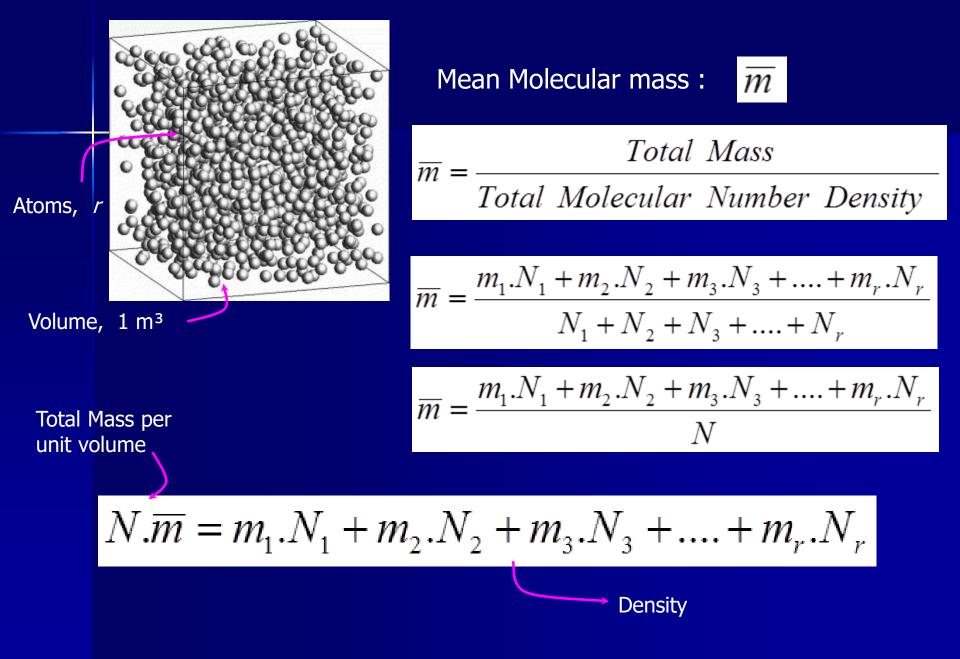
Masses of the atoms are:

$$m_1, m_2, m_3, \dots, m_r$$

Number densities of those atoms are:

$$N_1, N_2, N_3, ..., N_r$$

Total Mass of the atoms in the above volume:

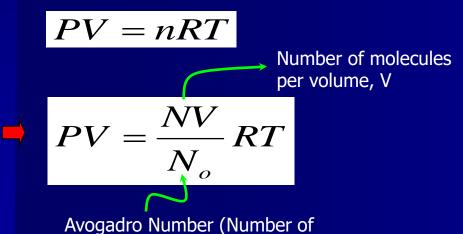

$$m_1 N_1 + m_2 N_2 + m_3 N_3 + \dots + m_r N_r$$

(This is called the **density** because we consider the unit volume)

Total Molecular Number density:

$$N = N_1 + N_2, +N_3, ..., +N_r$$

Density of the Atoms


Density
$$\rho = N \times \overline{m}$$

Total Molecular Number Density

Atoms, r

For the Ideal Gas

Boltzmann Constant P = NkTWhere,

D

$$k = \frac{R}{N_o}$$

molecules in a molecular weight)

Pressure Profile

Area, A

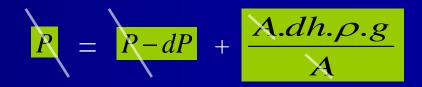
h

The pressure at the Earth's surface (or at higher levels) is a result of the weight of the overlying atmosphere [force per unit area]. If at a height of h the atmosphere has density ρ and pressure P then moving upwards at an infinitesimally small dh will decrease the pressure by amount dP equal to the weight of the layer of atmosphere of thickness dh.

Pressure, P - dP

Pressure, P

Density, p


h+dh

Pressure of the Lower Layer ____

Pressure of the higher Layer +

Weight of the air molecules in the selected part

Cross area of the selected part

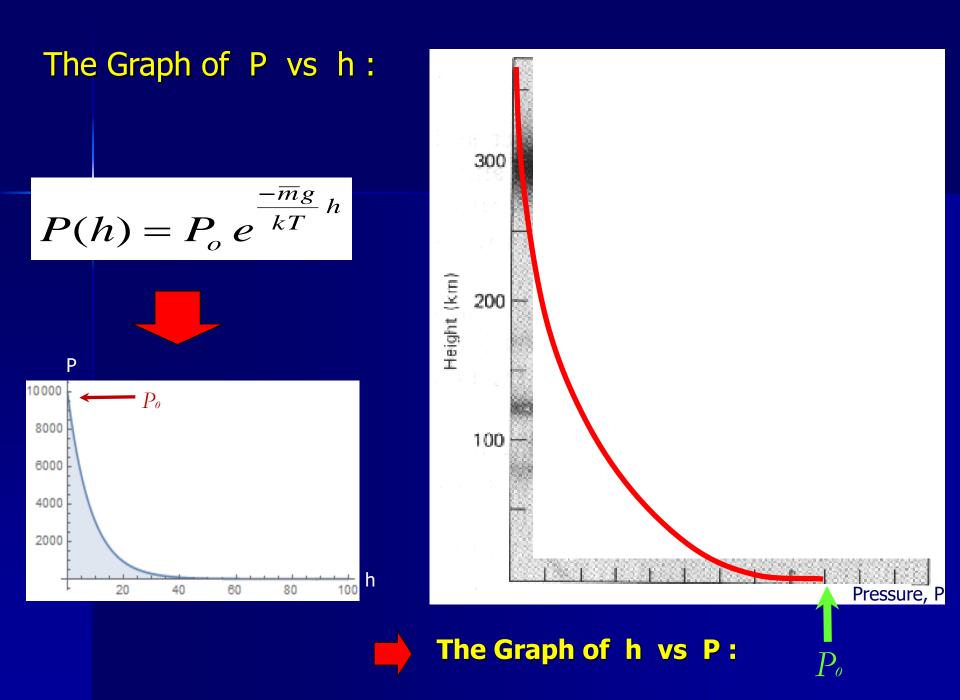
3-D View

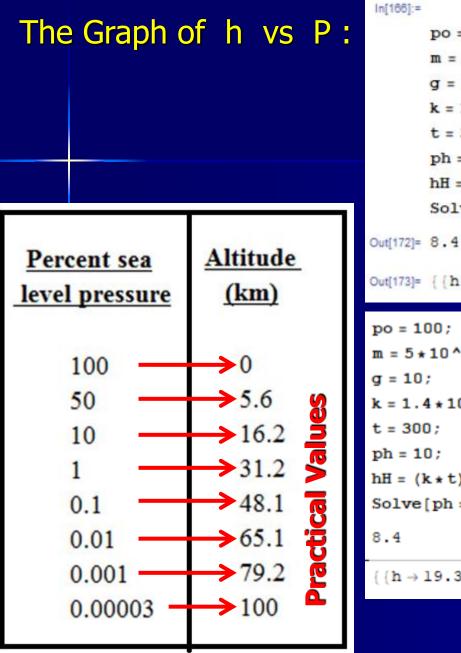
Pressure Profile

$$\frac{dP}{P} = -\frac{\overline{m}g}{kT}dh$$

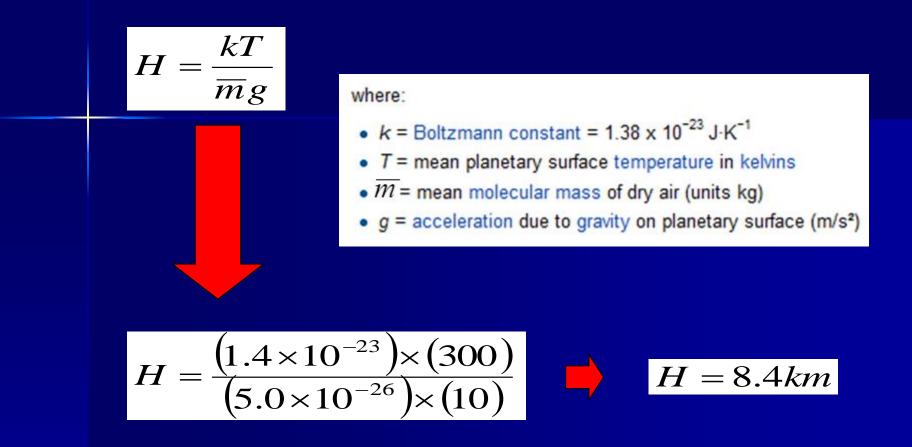
The Pressure at height h can be written as:

$$P(h) = P_o e^{\frac{-\overline{m}g}{kT}h}$$

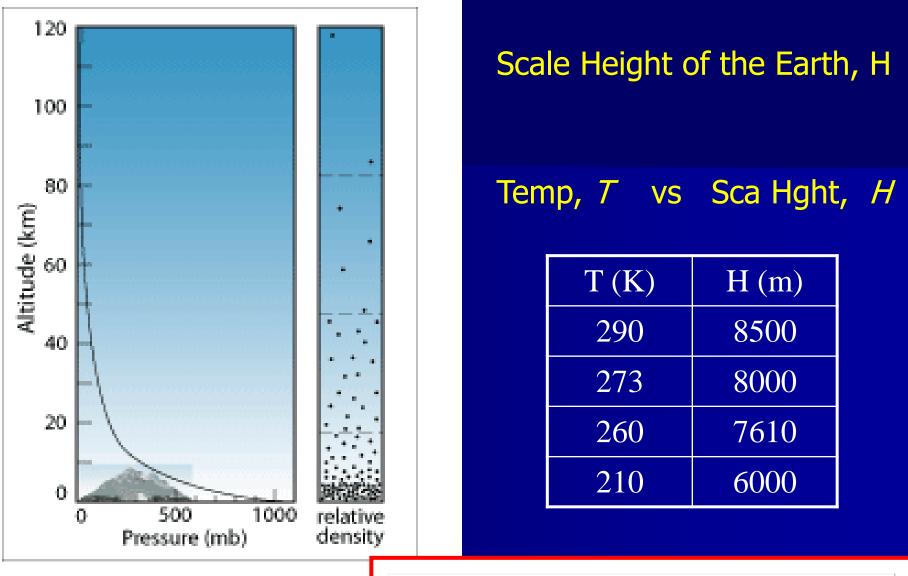

This is the general formula as the Pressure at height; This translate as the pressure decreasing exponentially with height !


If h=0 then P=Po (1); That means Po is the pressure at h=0 level or The Ground Level.

Also $\frac{-\overline{mg}}{kT}h$ is independent of the units. That means a some height !




```
Theoretical
        po = 100;
                                           Values...
        m = 5 \pm 10^{(-26)};
        q = 10;
        k = 1.4 \pm 10^{(-23)};
                                  po = 100;
        t = 300;
                                  m = 5 \pm 10^{(-26)};
        ph = 100;
                                  q = 10;
        hH = (k \star t) / (m \star g) / k = 1.4 \star 10^{(-23)};
        Solve[ph == po * Ex] t = 300;
                                  ph = 50;
                                  hH = (k \star t) / (m \star g) / 1000
Out[173]= { { h \to 0. } }
                                  Solve [ph == po \star Exp[-h/hH], h]
                                  8.4
m = 5 \pm 10^{(-26)};
                                  \{ \{ h \rightarrow 5.82244 \} \}
k = 1.4 \pm 10^{(-23)};
                              po = 100;
                              m = 5 \pm 10^{(-26)};
                              q = 10;
hH = (k \star t) / (m \star g) / 100
                              k = 1.4 \pm 10^{(-23)};
Solve[ph == po * Exp[-]
                              t = 300;
                              ph = 1;
                              hH = (k \star t) / (m \star g) / 1000
\{\{h \rightarrow 19.3417\}\}
                              Solve [ph == po \star Exp[-h/hH], h]
                              8.4
                              {{h → 38.6834}}
```

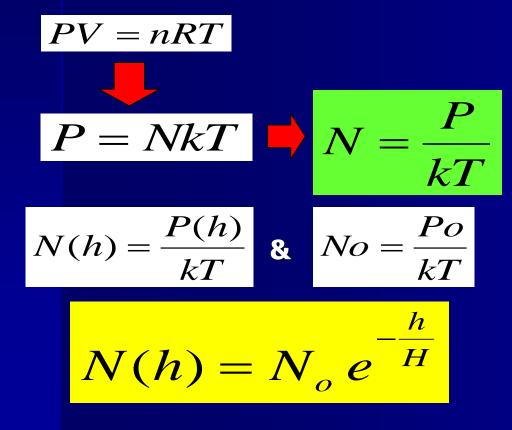

Scale Height (H)

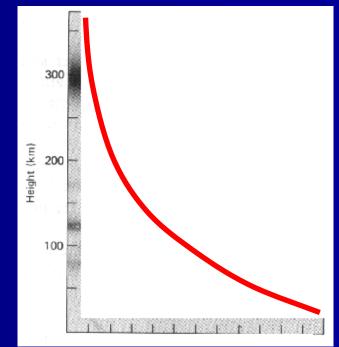
Theoretically this *H* is a constant. But practically this *H* is not a constant. Because, the values of "**mean molecular mass**", "**acceleration due to gravity**" and "**mean planetary surface temperature**" are changing with respect to height from the Earth surface.

The Graph of Scale Heights vs P :

Height	Pressure	
H	Po / e	0.36 Po
2 H	Po / e^2	0.13 Po
3 H	Po / e^3	0.04 Po
4 H	Po / e^4	0.01 Po
5 H	Po / e^5	0.006 Po
n H	Po / e^n	

Pressure and density decrease rapidly with altitude. barsmillibarsatmospheresmillimeters of mercury1.013 bar=1013 mb=1 atm=760 mm Hg


Correspondence of atmospheric measurement units.


	Height (km)	Pressure	
6 x 1	6	Po / 2	Po / 2^1
6 x 2	12	Po / 4	Po / 2^2
6 x 3	18	Po / 8	Po / 2^3
6 x 4	24	Po / 16	Po / 2^4
6 x 5	30	Po / 32	Po / 2^5
	6 n	Po / 2^n	

Using the Pressure Equation : $P(h) = P_o e^{-H}$

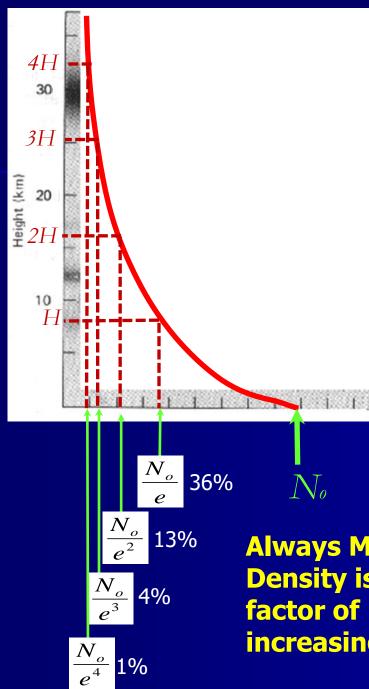
Where,
$$H = 8.4 km$$

For the Ideal Gas

Molecular Number Density

$$N(h) = N_o e^{-\frac{h}{H}}$$

If
$$h = H$$
,

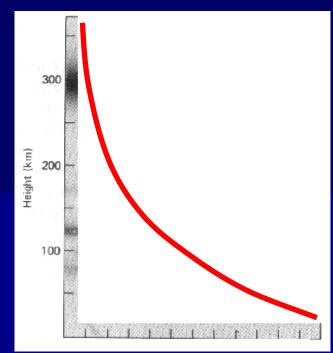

$$N(H) = N_o e^{\frac{-H}{H}}$$

$$N(H) = \frac{N_o}{e}$$

$$0.36N_o$$

Height	Mol Num Den	
Н	No / e	0.36 No
2 H	No / e^2	0.13 No
3 H	No / e^3	0.04 No
4 H	No / e^4	0.01 No
5 H	No / e^5	0.006 No
n H	No / e^n	

The Graph of H vs N :



Always Molecular Number Density is decreasing by a factor of e when height is increasing by a multiplies of H

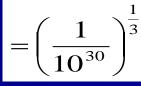
$$N(h) = N_o e^{-\frac{h}{H}}$$

Eg:

At which height from the surface of the Earth, which you can expect the Molecular Number Density which is half of that of the initial value of the Molecular Number Density ?

Molecular Number Density

If N(h) = No/2 when h=h,


$$\frac{N_o}{2} = N_o e^{\frac{-h}{H}}$$

$$h = - 6km$$

	Height (km)	Pressure	
6 x 1	6	No / 2	No / 2^1
6 x 2	12	No / 4	No / 2^2
6 x 3	18	No / 8	No / 2^3
6 x 4	24	No / 16	No / 2^4
6 x 5	30	No / 32	No / 2^5
	6 n	No / 2^n	

That means at 600 km height, the Molecular Number Density is (1/(10^30)) from its initial value.

Consider Linear Distance ; At 600 km height, the Molecular Linear Distance is $(1/(10^{30}))^{(1/3)} = (1/(10^{10}))$ from its initial value.

$$=\left(\frac{1}{10^{30}}\right)^{\frac{1}{3}}$$


Linear Distance of the molecules = Mean Free Path ; This is "Separation between two atoms"

Mean Free Path on the ground level $= 6.0 \times 10^{-8}$ m

Mean Free Path at altitude 600 km height from the ground level

$$= 6 \times 10^{-8} \times (10^{30})^{\frac{1}{3}}$$
$$= 6 \times 10^{-8} \times 10^{10}$$
$$= 600m$$

That means the **gap between two atoms** on that 600 km height (altitude) from the ground level is very high ! At that level there is no mean "**The gas**", because the **mean free path is very high** (600 m)

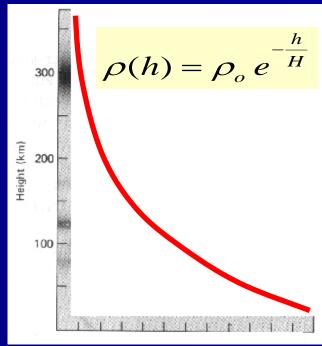
Density

D

Using the Molecular Number Density Equation :

$$N(h) = N_o e^{-\frac{h}{H}}$$
 W

 \overline{m}


Vhere,
$$H = 8.4 km$$

Mean Molecular Number Density
$$ho = N imes$$

Total Molecular Number Density

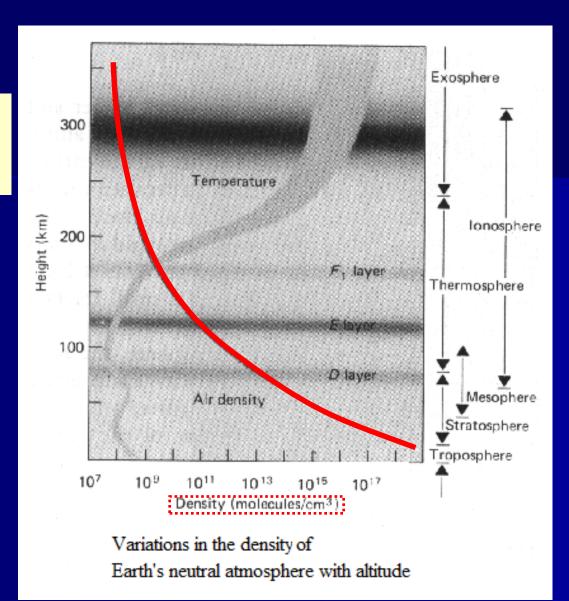
$$\rho(h) = N(h) \times \overline{m}$$
 &

$$\rho_o = N_o \times \overline{m}$$

Density

Density

$$\rho(h) = \rho_o \, e^{-\frac{h}{H}}$$

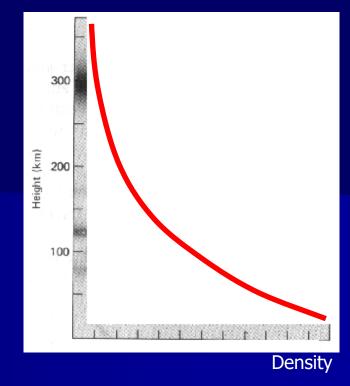

Where,
$$H = 8.4 km$$

If
$$h = H$$
,

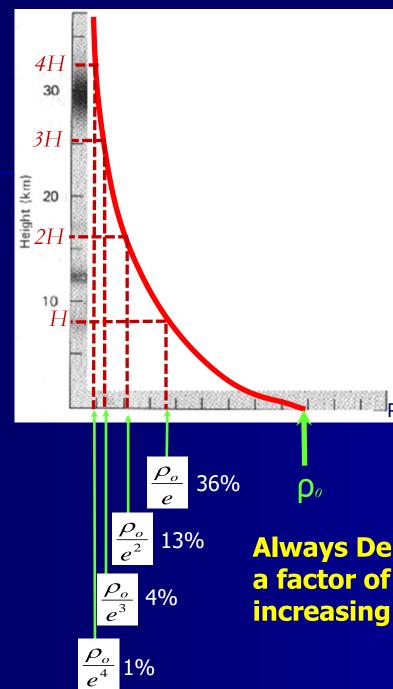
$$\rho(H) = \rho_o e^{\frac{-H}{H}}$$

$$\rho(H)$$

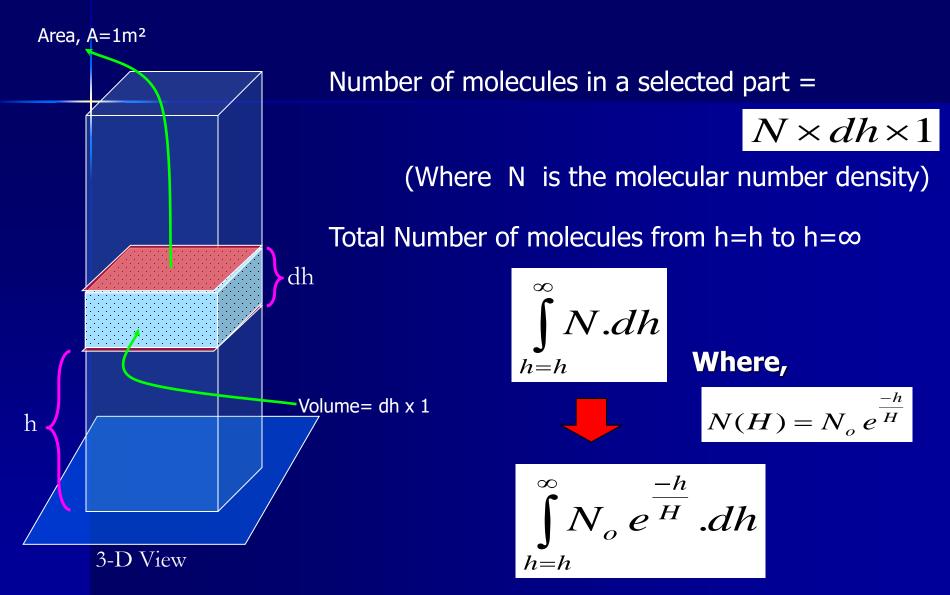
$$0.36\rho_o$$


 ρ_o

e

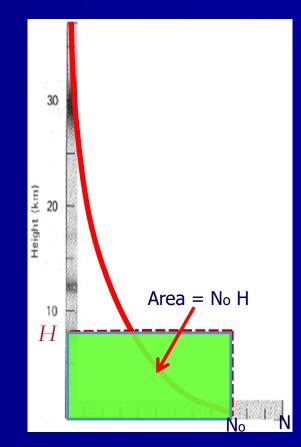

Density

h $\rho(h) = \rho_o e^{-H}$


Height	Mol Num Den	
Н	ρο / e	0.36 ρο
2 H	ρο / e^2	0.13 ρο
3 H	ρο / e^3	0.04 ρο
4 H	ρο / e^4	0.01 ρο
5 H	ρο / e^5	0.006 ρο
·····		
n H	ρο / e^n	

The Graph of H vs ρ :

Always Density is decreasing by a factor of e when height is increasing by a multiplies of H


$$N_{Total} = N_o H e^{-\frac{h}{H}}$$

Case I :

$$N_{Total} = N_o H$$

That means, if the molecular number density of the atmosphere of the Earth varies **linearly** without varying **exponentially**, the atmosphere of the Earth will diminish after ~8.4 km (a scale height).

This gives to us another definition for the Scale Height !

$$N_{Total}_{h\to\infty} = N_o H e^{-\frac{h}{H}}$$

Case II :

$$\frac{N_{Total}}{\substack{h \to \infty \\ 0 \to \infty}} = \frac{N_o H e^{-h/H}}{N_o H} = e^{-h/H}$$
Fraction of the Number of Molecules from the specific height h.

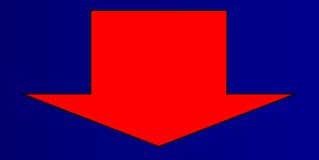
If h=H km Then RATIO = ?,

$$\left(e^{-h/H}\right)_{h\to H} = e^{-H/H} = e^{-1}$$

~ 40 %

60 % of the total molecules exist bellow H (8.4 km)!

If h=2H km Then RATIO = ?,
$$(e^{-h/H})_{h\to 2H} = e^{-2H/H} = e^{-2}$$


~ 15 %

85 % of the total molecules exist bellow 2H (16.8 km)!

If h=3H km Then RATIO = ?,
$$(e^{-h/H})_{h\to 3H} = e^{-3H/H} = e^{-3}$$

~ 5 %

95 % of the total molecules exist bellow 3H (16.8 km)!

h (k	xm)	N (h $\rightarrow \infty$) / N (0 $\rightarrow \infty$)	% below h
Η	08.4	36.78	63.21
2 H	16.8	13.53	86.46
3 H	25.2	4.97	95.02
4 H	36.6	1.83	98.16
5 H	42.0	0.67	99.32
6 H	50.4	0.24	99.75
7 H	58.8	0.09	99.90
8 H	67.2	0.03	99.96
9 H	75.6	0.01	99.98
10 H	84.0	0.004	99.995

Sketch the size of the Earth's Atmosphere

20 cm straight line

This is the size of the Earth's Atmosphere

If we assume the earth to be an Orange which has a radius of 20 cm; then the peel (rind) of the orange is like the atmosphere of the Earth!

1 mm thick line

Earth Atmosphere

Retaining of Gases in the Earth Major / Minor constituents Barometric Equation Scale Height Atmospheric Regions Temperature Profiles Retaining of Gases Number Density Profiles

Thank You !

© Photoshot