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nd the flux density F, i.e., the number of photons, or
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F=[[K6)cos6dQ2=2n j 1(6) cos 6 sin 0 d6 (A-2)

FIGURE A.1-I The geometry which defines the Specific Intensity ,(6)

The momentum crossing per unit time a unit area at an angle 0 to the
normal is equal to the flux in this direction divided by the speed of light c.
Hence it is equal to Z(6) cos 6 dQ/c, and its component normal to the surface
will be I(B) cos? 6 d2/c. But the time change of momentum per unit area
is pressure, and therefore, integrating over all angles we obtain the radiation

pressure P, I e
P= —ffl(@) cos?6dQ = _—'[1(0) cos? 0 sin 6 dbl (A-3)
E ¢

In (A-1), (A-2), and (A-3) we have averaged 1(6), 1(6) cos 0, and 1(6) cos? 0
over a whole sphere. When (6) is independent of the angle 0, i.e., for iso-
tropic radiation where I(f) = I, we simply find that J = I, F =0, and

6 4nl N
P= 3—7: This, however, can not be exactly the case in a planetary or stellar
atmosphere, because F = 0, i.e., zero net flux means that no radiation is
advancing toward the top of the atmosphere and therefore no radiation
will be emitted from the top of the atmosphere.
The next simplest approximation is to assume that 1(6) has only two
constant values, one for all the upward moving radiation, so that for

0 <6 < 90°.
106) =1, (A-4)

and one for all the downward moving radiation, so that for 90° < 0 < 180°,
J(®) = Id
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This approximation (Figure A.1-11I) has been very useful in dealling with
problems of radiation in stellar and planetary atmospheres. Using (A-4)

and (A-5), in (A-1), (A-2), and (A-3) we get,

= %(1, + 1) (A-6)
F=a(l,-1)=F.—Fa (A-T)
P M Py (A-8)
& 3c
The Equation of Radiative Transfer
r of thickness dh

Let us now consider a beam of radiation transversing a laye
at an angle 0 to the vertical (Figure A.1-1T). The intensity ,(6) of the radia-
tion will be reduced by absorption in the layer and will be enhanced by
emission from the medium. The amount absorbed per unit volume is pro-
portional to 7,(6) and to the density o of the medium. The constant of pro-
portionality #, is called the mass absorption coefficient. The amount emitted
per unit volume, on the other hand, is equal to the mass emission coefficient j,
times the density ¢ of the medium. Since the distance transversed by the
beam inside the layer is dh/cos 0, the intensity of the radiation after crossing

the layer at an angle 0 to the normal will change by an amount dI.(0)

where,
(A-9)
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FIGURE A.1-II A beam of radiation transversing an atmospheric layer of
thicknace M at an ancle P ta the vertical




It is now convenient to introduce the opacity T, of the medium, which
sometimes is also called the optical thickness or the optical depth of the
medium. The opacity T, is defined by the relation,

dr, = —ox%, dh (A-10)

where the minus sign is used because the optical depth is measured down-
wards from the top of the atmosphere where 7, = 0 (Figure A.1-II). Using
(A-10) in (A-9) we get,

st 2O _ - & (A-11)

Ty Ky
The atmospheres of the stars and the planets are usually in local thermo-
dynamic egquilibrium (LTE) which means that the average intensity of
radiation at each point of the atmosphere is equal to the emission of a
black-body at the local temperature T. Under LTE, %, and j, are related
through Kirchhoff’s law,
I _B(D) (A-12)

x,

where B,(T)is the intensity of the black-body radiation,

2hv® 1
B/(T)dv = T W dv (A-13)
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Thus under LTE the equation of radiative transfer becomes,

c0s 0 O _ 16 - BT (A-14)
dr,
Note that since black-body radiation is isotropic, B,(T) is not a function
of 0 as is 1,(0).

When the absorption coefficient is independent of the Wavelength, we
say that we have gray matter. For a gray atmosphere we can integrate (A-14)
over all frequencies to obtain,

cos %(0—) = 1(6) — B(T) (A-15)
i1

where, as we know from Planck’s law,
#B(T) = oT* (A-16)

Stellar and planetary atmospheres are usually treated as plane, horizontally
stratified layers because, as a rule, their thickness is much smaller than the
radius of the respective star or planet. Energy moves from the lowest
layers to the top of the atmosphere from which it is radiated into the sur-
rounding space. The energy in most cases is transferred from one atmospheric
layer to the next through radiation, rather than through conduction or
convection. This is called radiative transfer. When an atmosphere is in
radiative equilibrium the flux remains the same at all depths because other-
wise we would have accumulation of energy at certain layers. This means
that in a horizontally stratified atmosphere,

dF

e 0 (A-17)
It should be noted here that only the total energy flux remains constant,
and radiative equilibrium does not imply that dF,/dr, is also equal to zero.
The constant flux F, which passes continually through the different layers
and is ultimately emitted from the top of the atmosphere, determines the
effective temperature T, of the star or the planet. T, is the temperature at
which a black-body would emit the same flux. Hence T, is defined through

the relation,
e F=oTt (A-18)

The Eddington Approximation

We will now try to solve the equation of radiative transfer (A-15) using
the approximation of (A-4) and (A-5) and assuming, as Eddington did,
) that at large optical depths I, = I,. By integrating (A-15) over all angles

FIGURE A.1-IIl In this simplifying approximation the directional dependance
of I(6) is taken to be I(6) = I, for all upgoing radiation and 1(6) = I, for all
downgoing radiation
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and using (A-1) and (A-2) we get,

- 4nJ
i aJ — 4nB(T) (A-19)

Furthermore, assuming that the atmosphere is in radiative equilibrium,
where as seen from (A-17) dFjdc = 0, we find from (A-19) that,

J=B(T)= % T* (A-20)

Next, we can multiply (A-15) by cos f and then integrate it over all angles.
The result, using (A-2) and (A-3), is,

C—= F A-21
; (A-21)
because,

| j B(T) cos 6 dQ = 2zB(T) [ cos0sin6db =0 (A-22)
o

Since, as we have seen, Fis constant with respect to 7 we can integrate (A-21)

to obtain,
¢cP=Fr+ Co (A-23)
where C, is the integration constant. Replacing now P with J from (A-8)
we get,
i}’ij RO (A-24)

At the very top of the atmosphere (Figure A.1-TII) there is no downward
moving radiation because above the top of the atmosphere there is only
the free space. As 2 result, from (A-6) and (A-7) we have that at 7 = 0,
Jo =4 1p,and Fo = nl,,. Hence setting 7 = 0 in (A-24) we get,

47 2n 2
C::—-—J —'—‘-—-—I"=——F A'25
0 3 o 3 0 3 0 ( )
But F is the same at all layers hence Fo is the same as F and thus (A-24)
becomes,
By lF (A-26)
3 3

or,

1=£(_‘_+_3_ ) (A27)
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Since at T = 0 we have I, = 0, and at large optical depths we expect t0
have nearly isotropic conditions, i.€.; at 7 » 1 we have I, = I it follows

from (A-27) and (A-6) that,
fh (_3_ ) (A-28)
n\4 /
and
I,= f—(l + —3—-r> (A-29)
7 4
Using now (A-18) and (A-20), we can express (A-27) in terms of T and 7.
The final result is,
e ok el
T="T|—+— (A-30)
Frie4

This is the famous Eddington approximation which describes the change
of the temperature T with the optical depth 7. Note that the effective tem-
perature T, occurs at7 = 2/3 and not at 7 = 0. At the top of the atmos-
phere, ie. at 7= 0, the temperature T, is,

1 1/4
Ty i=sLe (—2—> = 0.86T, (A-31)

Now that we have obtained the relation between T and T, we can use it
to solve the equation of radiative transfer (A-15). The integral solution
of this differential equation is,

16,7) = e’ j B(T) e~ %" sec 0 &7’ (A-32)

3

which for 7 =0, i.e., for the radiation coming out from the top of the
atmosphere, yields the integral,
@©
10,0) = [ B(T) e~ *<° sec 0 dv’ (A-33)

0

But from (A-20), (A-30), and (A-18) we have,

o o 1 3 F 3

B(T s — T —+—7)=7" 1+ = A-34
@=tratn(ie3)-5 00 y) &
and by introducing (A-34) into (A-33) we can perform the integration
to obtain the expression,

1(0,0) = —Ii- 1+ E-cosﬂ) (A-33)
2 2



This final result was derived using the Eddington approximation and as-
suming local thermodynamic equilibrium, radiative equilibrium, and a
horizontally stratified gray atmosphere. The fact that we have used a step-
function dependance of I on 6 to derive (A-35) should not be considered
as a contradiction or as an inconsistency. It is only like using simpler
tools to construct others that are more complex and more precise.

From a pragmatic point of view the directional dependence of (A-35)
refiects the fact that the radiation emitted in the different directions origi-
nates essentially at different depths in the atmosphere. The bulk of the
radiation emitted from the top of the atmosphere originates at an optical
depth T = 1 below the top of the atmosphere. As seen from Figure A.1-1I1,
the point which yields an opacity equal to unity occurs closer to the top
of the atmosphere for rays propagating at larger angles 6. We have seen,
however, that the temperature increases with depth and therefore the rays
which propagate closer to the vertical will come from deeper, and hence
hotter layers of the atmosphere. Since hotter bodies emit more intense
radiation, (6, 0) will have a maximum at § = 0, which is in agreement
with the result we have obtained. The relative decrease of 1(6, 0) with 0
is given by the expression,

16,0 _2 3 p=1—06+06cos0 (A-36)
70,00 5 5

which, as seen in Section 4.2, is in very good agreement with experimental
observations of the Jimb-darkening effect of the solar photosphere.

Radiative Transfer in Radio Astronomy

When a source of intensity ! is behind an absorbing region of opacity 7,,
the equation of radiative transfer (A-14) in this region and in the line
of sight (6 = 0) becomes,

A (A-37)
hl’
which has the solution,
- =1 (A-38)

In the more general case, in computing 1, we must include also the emission
of the absorbing layer. For some generality we can assume that this region
is a uniform mixture of thermal plasma and of non-thermal radio sources.
Considering only normal incidence (0 = 0), (A-11) in this case takes the

form, : 0
a, b _dr (A-39)

where %, and j, are the frec-free mass absorption and mass emission coefﬁ\
cients of the thermal plasma and j the volume emission coefficient of =
the non-thermal radiation. The solution of this differential equation is,

Ty

[reilieadict J (_j_'_ - l'_> eV dr, (A-40)

%, O%
(]
where 7, is, as we mentioned above, the opacity of this region. In such.prob-
lems we usually assume a uniform temperature 7o for the entire plasma
region. In this case jy, ju, and =, are independent of 7, and can be taken
out of the integral to give,

L= e (I )a - (A-41)

%V "V
For a thermal plasma j, /%, = B/(T,), and for the non-thermal emission

we have, 21 o "
LG R (A-42)
env ngL TV

where L is the thickness of this region. Hence (A-41) can be written in the

form, I
P I =TI et [B,(To) reorn (1 —les) (A-43)
T,

v

In radioastronomical problems we have, as a rule, that hy|kT < 1, and
therefore (A-13) is simplified to the Rayleigh-Jeans formula,

B/(To) dv = 2’;? dv (A-44)

Using similar formulas to relate I,, I, and I, to their equivalent tempera-
tures Ty, T', and T*, we can convert (A-43) to a relation of temperatures,

=T TI’ T

T, =The™ + (To e —)(1 =) (A-45)
T'

where T, is the brightness temperature We observe with our antennas.

In the simple case of a thermal plasma region (H1I-region), without I tor kL,

(A-45) becomes,
Ty = To(l — ™) (A-46)

When , tends to infinity (optically thick medium) we simply have T, = To,
while when 7, tends to zero (optically thin medium) T, also tends to zero.
An application of this equation in the case of the solar corona is given at
the end of Section 4.3
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