

## <u>UNIVERSITY OF SRI JAYEWARDENEPURA – FACULTY OF APPLIED SCIENCES</u>

## BSc General Degree Second Year Second Semester Makeup Examination – April 2023

## DEPARTMENT OF PHYSICS

## PHY 208 1.0 - Atomic & Nuclear Physics

| me: One (01) hour            | No. of question                              | s: 25 No             | o. of pages: 04               | Total marks: 100     |  |  |
|------------------------------|----------------------------------------------|----------------------|-------------------------------|----------------------|--|--|
|                              | Aı                                           | nswer ALL questio    | ns                            |                      |  |  |
|                              | e most correct answer aith appropriate words | Index #:             |                               |                      |  |  |
| Symbols have their           | usual meanings.                              |                      |                               |                      |  |  |
| Q1. According to l           | Bohr's theory of the h                       | ydrogen atom, elec   | etrons starting in the        | 4th energy level and |  |  |
| eventually ending            | in the ground state cou                      | ıld produce a total  | of how many differ            | ent spectral lines?  |  |  |
| (i) 3                        | (ii) 4                                       | (iii) 6              | (iv) 9                        |                      |  |  |
| Q2. Which of the f           | following did Bohr use                       | e to explain his the | ory?                          |                      |  |  |
| (i) Conservation of          | f linear momentum.                           | (ii) Th              | e quantization of an          | gular momentum.      |  |  |
| (iii) Conservation           | of quantum frequency                         | (iv) co              | nservation of mass            |                      |  |  |
| Q3. What is the va           | lence electron in alkal                      | i metal?             |                               |                      |  |  |
| (i) f-electron               | (ii) p-electron                              | (iii) s-electron     | (iv) d-elect                  | tron                 |  |  |
| Q4. Which pairs of           | f species will have the                      | same electronic co   | onfiguration for botl         | n members?           |  |  |
| (i) Li+ and Na+              | (ii) He and Ne+                              | (iii) H and Li       | (iv) C an                     | nd N+                |  |  |
| Q5. What is the na           | turally occurring isoto                      | pe in a banana tha   | t gives it its radioac        | tivity?              |  |  |
| (i) K-40                     | (ii) H-1                                     | (iii) C-12           | (iv) O-1                      | 6                    |  |  |
| Q6. What happens             | when a neutron is abs                        | orbed by a nucleus   | s of an atom of U23           | 5?                   |  |  |
| (i) mass number of           |                                              | •                    | e electron is let out         |                      |  |  |
| (iii) U236 isotope is formed |                                              | (jv) nu              | (iv) nucleus becomes unstable |                      |  |  |

| Q7-10. Fill in the blanks by (positive, negative, zero, m                                                                                                                                                                                  | <b>C</b>                 | <u> </u>                 |                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--|--|--|
| Q7. The mass defect of the                                                                                                                                                                                                                 | atom is the difference   | of it atomic mass and i  | ts                       |  |  |  |
| Q8. The packing fraction is theper elementary particle in the nucleus.                                                                                                                                                                     |                          |                          |                          |  |  |  |
| Q9. The packing fraction is                                                                                                                                                                                                                | for elements             | having mass number be    | elow 20.                 |  |  |  |
| Q10. The packing fraction                                                                                                                                                                                                                  | is for elements          | s having mass numbers    | between 20 and 200.      |  |  |  |
| Q11. The restriction that no                                                                                                                                                                                                               | more than one electro    | on may occupy a given    | quantum state in an atom |  |  |  |
| was first stated by which of                                                                                                                                                                                                               | the following scientis   | ets?                     |                          |  |  |  |
| (i) de Broglie                                                                                                                                                                                                                             | ii) Heisenberg           | (iii) Bohr               | (iv) Pauli               |  |  |  |
| Q 12. Rutherford's experiments involving the use of alpha particle beams directed onto thin metal foils demonstrated the existence of which of the following?                                                                              |                          |                          |                          |  |  |  |
| (i) proton                                                                                                                                                                                                                                 | (ii) neutron             | (iii) nucleus            | (iv) positron            |  |  |  |
| Q 13. What is the energy E, released when two deutron nuclei fuse to form Helium nucleus, given that binding energies per nucleon of ${}^2_1H$ and ${}^4_2He$ are 1.1 and 7 MeV respectively? ${}^2_1H + {}^2_1H \rightarrow {}^4_2He + E$ |                          |                          |                          |  |  |  |
| (i) 4.8 MeV                                                                                                                                                                                                                                | (ii) 4.033 MeV           | (iii) -4.8 MeV           | (iv) -4.033 MeV          |  |  |  |
| Q 14. Rutherford's "Scatter following?                                                                                                                                                                                                     | ring α–particles by a go | old foil" experiment dis | proved which of the      |  |  |  |
| (i) Plum-pudding model of<br>(ii) Planetary model of the<br>(iii) De Broglie hypothesis<br>(iv) Wave nature of light                                                                                                                       |                          |                          |                          |  |  |  |

| Q15. Which of the follow                                  | ving statement(s) can be asso                              | ociate  | d with Bohr's th                         | eory of the aton   | 1?                 |  |
|-----------------------------------------------------------|------------------------------------------------------------|---------|------------------------------------------|--------------------|--------------------|--|
| (Select 2 answers)                                        |                                                            |         |                                          |                    |                    |  |
| (i) An electron orbiting th                               | ne nucleus can change its en                               | ergy (  | continuously                             |                    |                    |  |
| (ii) An electron orbiting t                               | he nucleus emits energy and                                | d falls | on the nucleus                           |                    |                    |  |
| (iii) An electron can chan                                | ge its energy only by a certa                              | ain po  | ortion when it jur                       | nps between the    | orbits             |  |
| (iv) The angular moment                                   | um of an electron around th                                | e nuc   | leus is equal an i                       | nteger times h/2   | π                  |  |
|                                                           |                                                            |         |                                          |                    |                    |  |
| Q16. Why has nuclear en                                   | ergy become an inevitable of                               | option  | for the develop                          | ment of the cour   | ıtry?              |  |
| (i) Because of the less pollution caused by nuclear plant |                                                            | lant    | (ii) High efficiency of nuclear energy   |                    |                    |  |
| (iii) Due to acute shortage of other sources of energy    |                                                            |         | (iv) High cost of energy production of   |                    |                    |  |
|                                                           |                                                            |         | other sources                            |                    |                    |  |
| Q17. What is the most att                                 | tractive part of nuclear energ                             | gy?     |                                          |                    |                    |  |
| (i) Supports countries' development. (ii)                 |                                                            | (ii)    | Has high efficiency of energy production |                    |                    |  |
| (iii) no pollution (i                                     |                                                            | (iv)    | y) is available in abundance             |                    |                    |  |
|                                                           |                                                            |         |                                          |                    |                    |  |
| Q18. Who invented nucle                                   | ear fission?                                               |         |                                          |                    |                    |  |
| (i) Rutherford                                            | (ii) Hans Bethe                                            |         | (iii) Otto Han                           | (iv) Mar           | rie Curie          |  |
| O10 20. When on store a                                   | f 11225 van deurseen finsien in                            |         | otor 200 MoV or                          |                    | J                  |  |
|                                                           | f U235 undergoes fission in<br>ut is 800 MW and reactor is |         |                                          | iergy is interated | J.                 |  |
| Suppose that the power of                                 | ut is 600 W w and reactor is                               | 2370    | efficient.                               |                    |                    |  |
| Q19. How many uranium                                     | atoms does it consume in o                                 | one da  | ay?                                      |                    |                    |  |
|                                                           | ii) ) 4.82×10 <sup>26</sup>                                |         | $6.94 \times 10^{26}$                    | (iv) 3.4           | $7 \times 10^{26}$ |  |
|                                                           |                                                            | ` '     |                                          | ` '                |                    |  |
| Q20. What mass of urani                                   | um does it consume in one o                                | day?    |                                          |                    |                    |  |
| (i) 376.31 kg                                             | ii) ) 300.21 kg                                            | (iii)   | 763.11 kg                                | (iv) 147           | 1.23 kg            |  |
|                                                           |                                                            |         |                                          |                    |                    |  |
| Q 21-23. A Giger counter                                  | r used for measuring the act                               | ivity ( | of a given radioa                        | ctive sample sho   | ows 4750           |  |
| counts at a particular inst                               | ant and after 5 minutes later                              | it sho  | ows 2700 counts                          | •                  |                    |  |
| Find correct answers for                                  | questions 21, 22, and 23.                                  |         |                                          |                    |                    |  |
|                                                           |                                                            |         |                                          |                    |                    |  |
| Q 21. What is the decay of                                | constant of the radioactive s                              | ample   | 2?                                       |                    |                    |  |
| (i) 0.0188 per second (ii                                 | 0.188 per second (iii)                                     | 0.021   | 8 per second                             | (iv) 0.00188 pe    | er second          |  |
|                                                           |                                                            |         |                                          |                    |                    |  |

| Q 22. What is the half-life of the substance?                                                  |
|------------------------------------------------------------------------------------------------|
| (i) 0.3682 s (ii) 36.82 s (iii) 3.682 s (iv) 368.2 s                                           |
| Q 23. What is the mean-life of the radio-active element present in the sample?                 |
| (i) 153.4 s (ii) 135.4 s (iii) 315.4 s (iv) 531.4 s                                            |
|                                                                                                |
| Q 24-25. A photon is emitted by a hydrogen atom when an electron makes a transition from $n=2$ |
| to $n = 1$ state. Given that the ionization potential = 13.6 eV.                               |
| Q 24. What is the energy of the photon emitted?                                                |
| (i) 18.6 eV (ii) 10.2 eV (iii) 16.32 eV (iv) 1.02 eV                                           |
| Q 25. What is the wavelength of the photon emitted? (Hint: find the momentum)                  |
| (i) 1218 Å (ii) 1318 Å (iii) 2218 Å (iv) 2318 Å                                                |
|                                                                                                |
| Bonus Question: (05 points)-Optional                                                           |
| Briefly discuss one of the medical applications given below under atomic or nuclear physics.   |
| (i) LASIK (Laser-assisted in situ keratomileusis ) eye surgery                                 |
| (ii) Diagnostic techniques                                                                     |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |