Special Theory of Relativity

12th Lecture

UNIVERSITY OF SRI JAYEWARDANEPURA - FACULTY OF APPLIED SCIENCES

B. Sc. General Degree Second Year Second Semester Course Unit Examination - April/May, 2022

DEPARTMENT OF PHYSICS

PHY 207 1.0 / PHY 257 1.0 / PHY <u>302 1.0</u> / PHY 327 1.0 - Special Theory of Relativity

<u>Time</u>: One hour; No of Questions: 04; No of Pages: 02 & Total marks: 100 Answer all questions

Assume, velocity of light (c) = $3 \times 10^8 \text{ ms}^{-1}$

01. Write down the **two** main Einstein's Postulates in Special Theory of Relativity (STR).

Obtain the following relativistic time equation, starting from the above postulates in STR.

$$t^1 = \gamma t$$
, where, $\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$; (symbols have their usual meanings).

The mean lifetime of stationary <u>muons</u> is measured to be 2.20 <u>ms</u>. The mean lifetime of high-speed <u>muons</u> in a burst of cosmic rays observed from Earth is measured to be 16.0 <u>ms</u>. What is the speed of these cosmic-ray <u>muons</u> relative to Earth?

(25 Marks)

Write down the two main Einstein's Postulates in Special Theory of Relativity (STR).

Obtain the following relativistic time equation, starting from the above postulates in STR.

$$t^1 = \gamma t$$
, where, $\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$; (symbols have their usual meanings).

The mean lifetime of stationary <u>muons</u> is measured to be 2.20 <u>ms.</u> The mean lifetime of high-speed <u>muons</u> in a burst of cosmic rays observed from Earth is measured to be 16.0 <u>ms.</u> What is the speed of these cosmic-ray <u>muons</u> relative to Earth?

$$t_2 = t_1 \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

02. Derive an expression for the length contraction $(l_2 = l_1 \sqrt{1 - v^2/c^2})$ starting from the relativistic time equation (Symbols have their usual meanings).

A rod lies parallel to the x axis of reference frame S, moving along this axis at a speed of 0.6 c. Its rest length is 2.0 m. What will be its measured length in frame S?

(25 Marks)

Derive an expression for the length contraction $(l_2 = l_1 \sqrt{1 - \frac{v^2}{c^2}})$ starting from the relativistic time equation (Symbols have their usual meanings).

A rod lies parallel to the x axis of reference frame S, moving along this axis at a speed of 0.6 c. Its rest length is 2.0 m. What will be its measured length in frame S?

$$l^1 = l \sqrt{1 - \frac{v^2}{c^2}}$$

Untitled-1 * - Wolfram Mathematica 12.1

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

$$ln[1]:= 1 = 2.0$$

 $v = 0.6 c$
 $ld = 1 * Sqrt[1 - (v^2/c^2)]$

Out[1]=
$$2$$
.

Out[2]=
$$0.6c$$

Let us assume two objects **A** and **B** are moving in an opposite direction to each other with constant velocities $\underline{\mathbf{V}}_{\mathbf{A}}$ and $\underline{\mathbf{V}}_{\mathbf{B}}$ respectively. Find the relative velocity of $\underline{\mathbf{B}}$ with respect to \mathbf{A} , $V_{(B,A)}$ starting from the Lorentz velocity transformation equation.

A particle moves along the x^1 axis of frame S^1 with velocity 0.40 c. Frame S^1 moves with velocity 0.60 c with respect to frame S. What is the velocity of the particle with respect to frame S?

{You may assume that the Lorentz velocity transformation equation for the above case takes the following form;

$$U_x^1 = \frac{U_x - v}{1 - \frac{v}{c^2} U_x}.$$
 Where symbols have their usual meanings.}

(25 Marks)

Let us assume two objects A and B are moving in an opposite direction to each other with constant velocities V_A and V_B respectively. Find the relative velocity of B with respect to A, $V_{(B,A)}$ starting from the Lorentz velocity transformation equation.

Relative Motion for the two bodies in Relativity

Let us assume two objects are moving in an opposite direction to each other,

Using Lorentz transformation equations; Ux' =

For this example; $U_{\chi}^1 = V_A^-$, $U_{\chi} = -V_B^-$ and $v = V_{(B,A)}^-$

$$U_{x}^{1}=V_{A}$$
 , $U_{x}=-1$

$$v = V_{(B,A)}$$

Direction of B is opposite to the A

$$U_x^1 = \frac{U_x - v}{1 - \frac{U_x v}{c^2}}$$

$$V_A = \frac{\left(-V_B\right) - v}{1 - \frac{\left(-V_B\right)}{c^2}}$$

$$U_{x}^{1} = \frac{U_{x} - v}{1 - \frac{U_{x}v}{c^{2}}} \qquad V_{A} = \frac{(-V_{B}) - v}{1 - \frac{(-V_{B})v}{c^{2}}} \qquad -v = \frac{V_{A} + V_{B}}{1 + \frac{V_{A}V_{B}}{c^{2}}}$$

$$-v = \frac{V_A + V_B}{1 + \frac{V_A V_B}{c^2}}$$

$$V_B \stackrel{B}{\longleftarrow}$$

This ν denotes V(B, A). V(B, A) has a negative value. The direction of V(B, A) should be the opposite direction. : V(A, B)is +ve;

$$v = V_{(A,B)} = \frac{V_A + V_B}{1 + \frac{V_A V_B}{c^2}}$$
 Or $v = V_{(B,A)}$

A particle moves along the x^1 axis of frame S^1 with velocity 0.40 c. Frame S^1 moves with velocity 0.60 c with respect to frame S. What is the velocity of the particle with respect to frame S?

$$v = V_{(P,S)} = \frac{V_{P,S'} + V_{S',S}}{1 + \frac{V_{P,S'}V_{S',S}}{c^2}}$$

Untitled-1 * - Wolfram Mathematica 12.1

Out[6]= 0.806452 C

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

04. A spaceship, moving away from Earth at a speed of 0.9 c, reports back by transmitting a signal at a frequency (measured in the spaceship frame) of 100 MHz. **To what frequency** must Earth receivers be tuned to receive the report?

{You may assume that the relationship between the observed frequency and the source frequency for the above case takes the following form;

$$f_o = \frac{f_s}{\gamma \left(1 - \beta \cos \theta\right)}.$$

Where, $\gamma = \sqrt[4]{1-\beta^2}$, $\beta = \frac{v}{c}$ and other symbols have their usual meanings.}

(25 Marks)

A spaceship, moving away from Earth at a speed of 0.9 c, reports back by transmitting a signal at a frequency (measured in the spaceship frame) of 100 MHz. **To what frequency** must Earth receivers be tuned to receive the report?

(b) If the source is receding directly from the observer:

Then,
$$\theta = \pi$$
 and $\cos \theta = -1$ \longrightarrow $f_o = f_s \frac{1}{\gamma(1+\beta)}$ where, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$

$$f_o = f_s \sqrt{\frac{1-\beta}{1+\beta}}$$

$$\beta = \frac{0.9c}{c}$$

$$f_s = 100MHz$$

$$f_o = f_s \sqrt{\frac{1-\beta}{1+\beta}} = ?$$

UNIVERSITY OF SRI JAYEWARDANEPURA FACULTY OF APPLIED SCIENCES

B. Sc. General Degree Second Year Second Semester Course Unit Examination

March, 2021 DEPARTMENT OF PHYSICS

PHY 207 1.0 / PHY 257 1.0 / PHY 302 1.0 / PHY 327 1.0

- Special Theory of Relativity

Time: One hour

No of Questions: 04

No of Pages: 02

Total marks: 60

Answer all questions

Assume, velocity of Light (c) = $3 \times 10^8 \text{ ms}^{-1}$

01.

Particle X, which is created in a particle accelerator, travels a total distance of 100.0/ between two detectors in 410 ns as measured in the laboratory frame before decaying into other particles.

What is the lifetime of the particle X as measured in its own frame.

(15 Marks)

Velocity of the particle X w.r.t lab frame : $v = \frac{dis \tan ce}{dis}$

$$v = \frac{dis \tan ce}{time}$$

$$v = \frac{100m}{410ns}$$

$$v = 2.44 \times 10^8 \, ms^{-1}$$

Using relativistic time equation:

$$t_{2} = t_{1} \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$t_{1} = t_{2}$$

$$t_2 = 410 \times 10^{-9}$$

$$v = 2.44 \times 10^8 \, ms^{-1}$$

$$t_1 = t_2 \sqrt{1 - \frac{v^2}{c^2}}$$
 $t_1 = 410 \sqrt{1 - \frac{(2.44 \times 10^8)^2}{(3.0 \times 10^8)^2}}$

$$t_1 = 238 \, ns$$

02.

An ellipse having an area πab is projected with a certain velocity. It was observed that the ellipse appears as a circle of <u>area</u> πb^2 . Determine the velocity of projection of the ellipse. (Where, a > b.)

(15 Marks)

$$l^1 = l \sqrt{1 - \frac{v^2}{c^2}}$$

$$l = a$$
 and

$$l'=b$$

$$b = a \sqrt{1 - \frac{v^2}{c^2}}$$

and
$$l'=b$$
 $\Rightarrow b=a\sqrt{1-\frac{v^2}{c^2}}$ $\Rightarrow b^2=a^2(1-\frac{v^2}{c^2})$

$$v^2 = c^2 \frac{a^2 - b^2}{a^2}$$

$$v = \frac{c}{a}\sqrt{a^2 - b^2}$$

03. Let A be the twin on the earth and B be the twin in the ship in the <u>twin paradox</u> <u>episode</u>. Comment on the following statement using your knowledge of special theory of relativity.

"The twin B can go to the future, but can not go to the past"

(15 Marks)

"The twin B can go to the FUTURE, but can not go to the PAST"

What is FUTURE?

What is PAST?

"The twin B can go to the FUTURE; but not his own FUTURE and its other one's FUTURE!!!

"The twin B can not go to the PAST"; according to the Relativity (STR) time can not negative !!!

A spacecraft moves towards the Earth with velocity $\frac{c}{2}$ as viewed from Earth's frame. The spacecraft emits light of wave length λ as measured in its own frame. The wave length of light as seen by an observer on the Earth is $6000 \stackrel{\circ}{A}$. (1 $\stackrel{\circ}{A}$ = 10⁻¹⁰ m)

Find the value of λ .

{You may assume that the relationship between the observed frequency and the source frequency for the above case takes the following form;

$$f_o = \frac{f_s}{\gamma \left(1 - \beta \cos \theta\right)}.$$

Where, $\gamma = \sqrt[4]{1-\beta^2}$, $\beta = \frac{v}{c}$ and other symbols have their usual meanings.

(15 Marks)

A spacecraft moves towards the Earth with velocity $\frac{c}{2}$ as viewed from Earth's frame. The spacecraft emits light of wave length λ as measured in its own frame. The wave length of light as seen by an observer on the Earth is 6000 $\stackrel{\circ}{A}$. (1 $\stackrel{\circ}{A}$ = 10⁻¹⁰ m)

Find the value of λ .

(a) If the source is directly approaching the observer:

Then,
$$\theta = 0$$
 and $\cos \theta = 1$ \Rightarrow $f_o = f_s \frac{1}{\gamma(1-\beta)}$ where, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$

$$f_o = f_s \sqrt{\frac{1+\beta}{1-\beta}}$$

$$\beta = \frac{v}{c}$$

A spacecraft moves towards the Earth with velocity $\frac{c}{2}$ as viewed from Earth's frame. The spacecraft emits light of wave length λ as measured in its own frame. The wave length of light as seen by an observer on the Earth is 6000 $\overset{\circ}{A}$. (1 $\overset{\circ}{A}$ = 10-10 m)

Find the value of λ .

$$f_o = f_s \sqrt{\frac{1+\beta}{1-\beta}}$$

$$\beta = \frac{c/2}{c}$$
 & $f_s = (\lambda)$ and $f_o = (6000 \stackrel{o}{A})$

$$f_s = \frac{C}{\lambda}$$
 and

$$f_s = \frac{C}{\lambda}$$
 and $f_o = \frac{C}{6000 A}$

$$\frac{C}{6000 \stackrel{\circ}{A}} = \frac{C}{\stackrel{\circ}{\lambda} \stackrel{\circ}{A}} \sqrt{\frac{1-\beta}{1+\beta}} \to \lambda \Rightarrow \text{ can be calculated !!!}$$

Thank You!