

UNIVERSITY OF SRI JAYEWARDANEPURA - FACULTY OF APPLIED SCIENCES B. Sc. General Degree Second Year Second Semester Course Unit Examination - April/May, 2022 **DEPARTMENT OF PHYSICS** PHY 207 1.0 / PHY 257 1.0 / PHY 302 1.0 / PHY 327 1.0 - Special Theory of Relativity

Time : One hour; No of Questions : 04; No of Pages : 02 & Total marks : 100 Answer all questions

Assume, velocity of light (c) = $3 \times 10^8 \text{ ms}^{-1}$

01. Write down the two main Einstein's Postulates in Special Theory of Relativity (STR).

Obtain the following relativistic time equation, starting from the above postulates in STR.

$$t^{1} = \gamma t$$
, where, $\gamma = \left(1 - \frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}$; (symbols have their usual meanings).

The mean lifetime of stationary muons is measured to be 2.20 ms. The mean lifetime of high-speed muons in a burst of cosmic rays observed from Earth is measured to be 16.0 ms. What is the speed of these cosmicray muons relative to Earth?

(25 Marks)

Derive an expression for the length contraction $(l_2 = l_1 \sqrt{1 - \frac{v^2}{c^2}})$ starting from the relativistic time equation 02. (Symbols have their usual meanings).

A rod lies parallel to the x axis of reference frame S, moving along this axis at a speed of 0.6 c. Its rest length is 2.0 m. What will be its measured length in frame S?

(25 Marks)

Β

03.

Let us assume two objects A and B are moving in an opposite direction to each other with constant velocities VA and VA respectively. Find the relative velocity of B with respect to A, $V_{(B,A)}$ starting from the Lorentz velocity transformation equation.

A particle moves along the x^1 axis of frame S^1 with velocity 0.40 c. Frame S^1 moves with velocity 0.60 c with respect to frame S. What is the velocity of the particle with respect to frame S?

{You may assume that the Lorentz velocity transformation equation for the above case takes the following form;

$$U_{x}^{1} = \frac{U_{x} - v}{1 - \frac{v}{c^{2}}U_{x}}.$$
 Where symbols have their usual meanings.}
(25 Marks)

04. A spaceship, moving away from Earth at a speed of 0.9 c, reports back by transmitting a signal at a frequency (measured in the spaceship frame) of 100 MHz. **To what frequency** must Earth receivers be tuned to receive the report?

{*You may assume that the relationship between the observed frequency and the source frequency for the above case takes the following form;*

$$f_o = \frac{f_s}{\gamma \left(1 - \beta \cos\theta\right)}.$$

Where, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$, $\beta = \frac{v}{c}$ and other symbols have their usual meanings.}

(25 Marks)
