UNIVERSITY OF SRI JAYEWARDANEPURA - FACULTY OF APPLIED SCIENCES
 B. Sc. General Degree Second Year Second Semester Course Unit Examination - April/May, 2022
 DEPARTMENT OF PHYSICS
 PHY 207 1.0 / PHY 257 1.0 / PHY 302 1.0 / PHY 327 1.0 - Special Theory of Relativity

Time : One hour; No of Questions : 04; No of Pages : 02 \& Total marks : 100 Answer all questions

Assume, velocity of light (c) $=3 \times 10^{8} \mathrm{~ms}^{-1}$

1. Write down the two main Einstein's Postulates in Special Theory of Relativity (STR).

Obtain the following relativistic time equation, starting from the above postulates in STR.

$$
t^{1}=\gamma t, \quad \text { where, } \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} ;(\text { symbols have their usual meanings). }
$$

The mean lifetime of stationary muons is measured to be 2.20 ms . The mean lifetime of high-speed muons in a burst of cosmic rays observed from Earth is measured to be 16.0 ms . What is the speed of these cosmicray muons relative to Earth?
(25 Marks)
02. Derive an expression for the length contraction $\left(l_{2}=l_{1} \sqrt{1-v^{2} / c^{2}}\right)$ starting from the relativistic time equation (Symbols have their usual meanings).

A rod lies parallel to the x axis of reference frame S , moving along this axis at a speed of 0.6 c . Its rest length is 2.0 m . What will be its measured length in frame S ?
(25 Marks)
03.

Let us assume two objects \mathbf{A} and \mathbf{B} are moving in an opposite direction to each other with constant velocities $\mathbf{V}_{\mathbf{A}}$ and $\mathbf{V}_{\mathbf{A}}$ respectively. Find the relative velocity of B with respect to $\mathrm{A}, V_{(B, A)}$ starting from the Lorentz velocity transformation equation.

A particle moves along the x^{1} axis of frame S^{1} with velocity 0.40 c. Frame S^{1} moves with velocity 0.60 c with respect to frame S. What is the velocity of the particle with respect to frame S ?
\{You may assume that the Lorentz velocity transformation equation for the above case takes the following form;

$$
\left.U_{x}^{1}=\frac{U_{x}-v}{1-\frac{v}{c^{2}} U_{x}} . \text { Where symbols have their usual meanings. }\right\}
$$

(25 Marks)
04. A spaceship, moving away from Earth at a speed of 0.9 c , reports back by transmitting a signal at a frequency (measured in the spaceship frame) of 100 MHz . To what frequency must Earth receivers be tuned to receive the report?
\{You may assume that the relationship between the observed frequency and the source frequency for the above case takes the following form;

$$
f_{o}=\frac{f_{s}}{\gamma(1-\beta \cos \theta)}
$$

Where, $\gamma=1 / \sqrt{1-\beta^{2}}, \beta=\frac{v}{c}$ and other symbols have their usual meanings. $\}$

