

UNIVERSITY OF SRI JAYEWARDANEPURA FACULTY OF APPLIED SCIENCES

B. Sc. General Degree Second Year Second Semester Course Unit Examination

March, 2021 DEPARTMENT OF PHYSICS PHY 207 1.0 / PHY 257 1.0 / PHY 302 1.0 / PHY 327 1.0 - Special Theory of Relativity

Time : One hour No of Questions : 04 No of Pages : 02 Total marks : 60

Answer all questions

Assume, velocity of Light (c) = $3 \times 10^8 \text{ ms}^{-1}$

01. Particle X, which is created in a particle accelerator, travels a total distance of 100.0 *m* between two detectors in 410 *ns* as measured in the laboratory frame before decaying into other particles.

What is the lifetime of the particle X as measured in its own frame.

(15 Marks)

An ellipse having an area πab is projected with a certain velocity. It was observed that the ellipse appears as a circle of area πb^2 . Determine the velocity of projection of the ellipse. (Where, $a \rangle b$.)

(15 Marks)

03. Let A be the twin on the earth and B be the twin in the ship in the <u>twin paradox</u> <u>episode</u>. Comment on the following statement using your knowledge of special theory of relativity.

" The twin B can go to the future, but can not go to the past "

(15 Marks)

04. A spacecraft moves towards the Earth with velocity $\frac{c}{2}$ as viewed from Earth's frame. The spacecraft emits light of wave length λ as measured in its own frame. The wave length of light as seen by an observer on the Earth is 6000 $\stackrel{\circ}{A}$. (1 $\stackrel{\circ}{A} = 10^{-10}$ m)

Find the value of λ .

{*You may assume that the relationship between the observed frequency and the source frequency for the above case takes the following form;*

$$f_o = \frac{f_s}{\gamma \left(1 - \beta \cos\theta\right)}.$$

Where, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$, $\beta = \frac{v}{c}$ and other symbols have their usual meanings.}

(15 Marks)
