UNIVERSITY OF SRI JAYEWARDANEPURA
FACULTY OF APPLIED SCIENCES
B. Sc. General Degree Second Year Second Semester Course Unit Examination

December, 2019
DEPARTMENT OF PHYSICS
PHY 207 1.0 / PHY 257 1.0 / PHY 3021.0 / PHY 3271.0

- Special Theory of Relativity

Time : One hour
No of Questions: 04
No of Pages: 02
Total marks : 100

Answer all questions

Assume, velocity of Light (c) $=3 \times 10^{8} \mathrm{~ms}^{-1}$

1. Write short notes on,
(i) Michelson Morley Experiment and
(ii) Twin Paradox
in special theory of relativity (STR).
(25 Marks)
2. (i) Write down two main Einstein's Postulates in Special Theory of Relativity (STR).
(ii) Obtain the following relativistic time equation, starting from the above Postulates in STR.

$$
t_{2}=t_{1} \frac{1}{\sqrt{1-v^{2} / c^{2}}} \text { (Symbols have their usual meanings) }
$$

(iii) The first human trip to the Moon took about three days (approximately 3×10^{5} seconds) each way. The distance from the Earth to the Moon is roughly $4 \times 10^{8} \mathrm{~m}$.

> P.T.O
(a) Find the velocity of the space ship.
(b) When they returned, how much younger were the astronauts than their twin brother who remained on the Earth ?
(25 Marks)
03. (i) Derive an expression for the length contraction ($\left.l_{2}=l_{1} \sqrt{1-v^{2} / c^{2}}\right)$ starting from the relativistic time equation (Symbols have their usual meanings).
(ii) A rod of length $\mathbf{2 0} \mathbf{~ c m}$ is held at an angle of 45° to the horizontal. It's now projected with a velocity of $\mathbf{0 . 9 c}$ along the horizontal such that the rod always keeps the same angle of 45° during the motion. What will be the length of the rod as seen by,
(a) an observer stationary on the ground?
(b) an observer moving with the rod?
(25 Marks)
04. (i) What is the Doppler Effect in Relativity for a moving light source ? You are given the following mathematical equation for the Doppler effect,
$f_{o}=\frac{f_{s}}{\gamma(1-\beta \cos \theta)}$. Where $\gamma=1 / \sqrt{1-\beta^{2}}, \quad \beta=\frac{v}{c}$ and other symbols have their usual meanings.
(ii) A blue coloured vehicle appears as a purple coloured vehicle to a stationary observer on the Earth due to its speed.
(a) Find the velocity of the vehicle. (Wavelengths of blue and purple light are 450 nm and 400 nm respectively.)
(b) Is the above incident practically possible ? Briefly explain your answer.

