UNIVERSITY OF SRI JAYEWARDANEPURA

B. Sc. General Degree Second Year Course Unit Examination - Oct/Nov, 2018.

PHY 2071.0 / PHY 2571.0 / PHY 3021.0 / PHY 3271.0

- Special Theory of Relativity

Time : One hour

Answer all questions

Assume, velocity of Light (c) $=3 \times 10^{8} \mathrm{~ms}^{-1}$

1. Write down the two main Einstein's Postulates in Special Theory of Relativity (STR).

Obtain the following relativistic time equation, starting from the above Postulates in STR.
$t^{1}=\gamma t, \quad$ where, $\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} ;($ Symbols have their usual meanings)
An alpha particle and a beta particle, which are created in a particle accelerator, travel a total distance of 10.0 m between two detectors in 50 ns and 40 ns respectively, as measured in the laboratory frame.
(a) What is the lifetime of the alpha particle as measured in its own frame?
(b) What is the lifetime of the alpha particle as measured in the frame of the beta particle?
02. Derive an expression for the length contraction $\left(l_{2}=l_{1} \sqrt{1-v^{2} / c^{2}}\right)$ starting from the relativistic time equation (Symbols have their usual meanings).

A star known as Alfa-Centauri is about 4.0 light years (1 light year $=9.4608 \mathrm{x}$ 1015 m) distant from the Earth. If suppose a rocket from the Earth is to reach it in five years, how fast would it have to go?

What is the length of the trip (from the Earth to Alpha-Centauri) according to an observer in the rocket?
03. Derive the equation,

$$
E^{2}-p^{2} c^{2}=m_{o}^{2} c^{4}
$$

starting from the Einstein's energy equation, $E=m c^{2}$. (Symbols have their usual meanings)

Hence, obtain the equation,

$$
m=\gamma m_{o}, \quad \text { where, } \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}
$$

for mass variation in relativistic dynamics. (Symbols have their usual meanings)

A proton is accelerated to a velocity 0.95 c by using a particle accelerator. Rest mass of the proton is $1.67 \times 10^{-27} \mathrm{~kg}$. Calculate the mass of the moving proton.
04. What is meant by the Doppler Effect in Relativity for a moving light source?

You are given the following mathematical equation for the Doppler effect,

$$
f_{o}=\frac{f_{s}}{\gamma(1-\beta \cos \theta)} . \text { Where } \gamma=1 / \sqrt{1-\beta^{2}}, \quad \beta=\frac{v}{c} \quad \text { and other symbols }
$$ have their usual meanings.

A spacecraft moves towards the Earth with a constant velocity $c / 2$ as viewed from the Earth's frame. The spacecraft emits light of wave length λ as measured in its own frame. The wave length of the light as seen by an observer on the Earth is $6000 \stackrel{\circ}{A}$. $\left(1 \stackrel{o}{A}=10^{-10} \mathrm{~m}\right)$

Find the value of λ.

