University of Sri Jayewardenepura

B.Sc. General/Special Degree Second Year Second Semester Examination November 2016

PHY 207 1.0 Special Theory of Relativity
 Time: - One (01) hour

Answer all questions.

Assume, speed of Light (c) $=3.0 \times 10^{8} \mathrm{~ms}^{-1}$

1. a). Derive the expression $E^{2}=c^{2} p^{2}+E_{0}^{2}$ using the mass-energy-momentum relationships and mass-energy equivalence. All symbols have their usual meanings.
b). Hence, show that the kinetic energy K of an object moving with a constant speed v can be written as

$$
K=m_{0} c^{2}\left(\frac{1}{\sqrt{1-v^{2} / c^{2}}}-1\right) . \text { All symbols have their usual }
$$

meanings.
c). The mean life-time of muons at rest is $2.2 \times 10^{-6} \mathrm{~s}$. The observed mean life-time of muons as measured in the laboratory is $6.6 \times 10^{-6} \mathrm{~s}$.

Find
(i). The effective mass of a muon at this speed when its rest mass is $207 \mathrm{~m}_{\mathrm{e}}$
(ii). Its kinetic energy
(iii). Its momentum, where m_{e} is the mass of an electron.
02. a). Obtain an expression for the length contraction $\left(L=L_{0}\left(\sqrt{1-v^{2} / c^{2}}\right)\right)$ for an object moving with velocity v along its length L_{0}.
b). A meter stick in frame $S^{/}$makes an angle of 30^{0} with the $x /$ axis. If that frame moves parallel to the x axis of frame S with velocity $0.90 c$ relative to the frame S, what is the length of the stick as measured from S.
c). An electron of $\beta=0.9999$ moves along the axis of an evacuated tube that has a length of 2.6 m as measured by a laboratory observer S at rest relative to the tube. An observer $S^{/}$at rest relative to the electron, however, would see this tube moving with speed $v(=\beta c)$. What length would observer $S^{/}$measure for the tube?
03. a). Derive an expression for the time dilation effect (i.e., relativistic time, $\tau=1 / \sqrt{1-v^{2} / c^{2}} \tau_{0}$) for an object moving with speed v with respect to an inertial reference frame at rest.
b) The half-life of muons is $1.53 \times 10^{-6} \mathrm{~s}$ as measured in the laboratory frame of reference. But, the half-life of muons in cosmic rays is $6.40 \times 10^{-6} \mathrm{~s}$.
(i). Explain this time difference
(ii) Find the velocity of muons in the Cosmic rays.
c). Particle X , which is created in a particle accelerator, travels a total distance of 100.0 m between two detectors in 410 ns as measured in the laboratory frame before decaying into other particles. What is the life time of the particle X as measured in its own frame.

