Space Physics

Space Physics

Lecture – 04

Earth Atmosphere

Retaining of Gases in the Earth Major / Minor constituents Barometric Equation Scale Height Number Density Profiles Atmospheric Regions Temperature Profiles Retaining of Gases

Mean Molecular 🗸 Number Density

Density
$$\rho = N \times \overline{m}$$

Total Molecular Number Density

Atoms, r

For the Ideal Gas

Boltzmann Constant P = NkTWhere,

D

$$k = \frac{R}{N_o}$$

molecules in a molecular weight)

Pressure Profile

Area, A

h

The pressure at the Earth's surface (or at higher levels) is a result of the weight of the overlying atmosphere [force per unit area]. If at a height of h the atmosphere has density ρ and pressure P then moving upwards at an infinitesimally small dh will decrease the pressure by amount dP equal to the weight of the layer of atmosphere of thickness dh.

Pressure, P - dP

Pressure, P

Density, p

h+dh

Pressure of the Lower Layer ____

Pressure of the Higher Layer

Weight of the air molecules in the selected part

Cross area of the selected part

3-D View

Pressure Profile

This minus (-) sign indicates that as the height h is increases, the pressure P is decreases.

Where g is used to denote the acceleration due to gravity. For small dh it is possible to assume g to be constant. Also, $\rho = N \times \overline{m}$

$$dP = -N.\overline{m}.g.dh$$

Also, we know

$$P = NkT$$
 —²

sing 1 & 2;
$$\frac{dP}{P} = -\frac{\overline{m}g}{kT}dh$$

Pressure Profile

$$\frac{dP}{P} = -\frac{\overline{m}g}{kT}dh$$

The Pressure at height h can be written as:

$$P(h) = P_o e^{\frac{-\overline{m}g}{kT}h}$$

This is the general formula as the Pressure at height; This translate as the pressure decreasing exponentially with height !

If h=0 then P=Po (1); That means Po is the pressure at h=0 level or The Ground Level.

Also $\frac{-\overline{mg}}{kT}h$ is independent of the units. That means a some height !

Scale Height (H)

A scale height is a term often used in scientific context for a distance over which a quantity decreases by a factor of e (the base of natural logarithms). It is usually denoted by the capital letter H.

$$P(h) = P_o e^{\frac{-\overline{m}g}{kT}h}$$

For planetary atmosphere, it is the vertical distance upwards, over the which the pressure of the atmosphere decreases by a factor of e. The scale height remains constant for a particular temperature. It can be calculated by,

If
$$P = Po/e$$
 then $h = H$,

where:

- k = Boltzmann constant = 1.38 x 10⁻²³ J·K⁻¹
- T = mean planetary surface temperature in kelvins
- *m* = mean molecular mass of dry air (units kg)
- g = acceleration due to gravity on planetary surface (m/s²)

Scale Height (H)

The Graph of Scale Heights vs P:

$$P(h) = P_{o} e^{\frac{-h}{H}}$$
If h = H,
$$P(H) = P_{o} e^{\frac{-H}{H}} \implies P(H) = \frac{P_{o}}{e} \implies 0.36P_{o}$$
If h = 2H,
$$P(H) = P_{o} e^{\frac{-2H}{H}} \implies P(H) = \frac{P_{o}}{e^{2}} \implies 0.13P_{o}$$
If h = 3H,
$$P(H) = P_{o} e^{\frac{-3H}{H}} \implies P(H) = \frac{P_{o}}{e^{3}} \implies 0.04P_{o}$$
If h = 4H,
$$P(H) = P_{o} e^{\frac{-4H}{H}} \implies P(H) = \frac{P_{o}}{e^{4}} \implies 0.01P_{o}$$

The Graph of Scale Heights vs P :

Height	Pressure	
H	Po / e	0.36 Po
2 H	Po / e^2	0.13 Po
3 H	Po / e^3	0.04 Po
4 H	Po / e^4	0.01 Po
5 H	Po / e^5	0.006 Po
n H	Po / e^n	

The Graph of H vs P :

Always pressure is decreasing by a factor of e when height is increasing by a multiplies of H

Pressure and density decrease rapidly with altitude. barsmillibarsatmospheresmillimeters of mercury1.013 bar=1013 mb=1 atm=760 mm Hg

Correspondence of atmospheric measurement units.

In[8]:= data = {{290, 8500}, {273, 8000}, {260, 7610}, {210, 6000}}; g1 = ListPlot[data, PlotStyle → {RGBColor[1, 0, 0], PointSize[0.02]}]; f = Fit[data, {t, 1}, t] g2 = Plot[f, {t, data[[1, 1]], Last[data][[1]]}, PlotStyle → RGBColor[0, 1, 0]]; Show[g1, g2] Print["The Scale Height is the function of Temperature in Kelvin (t)"] Print[" H(t) = ", f]

- 0

Out[10]= -582.316 + 31.403 t

Scale Height (H)

Theoretically this *H* is a constant. But practically this *H* is not a constant. Because, the values of "mean molecular mass", "acceleration due to gravity" and "mean planetary surface temperature" are changing with respect to height from the Earth surface. Eg: At which height from the surface of the Earth, which you can expect the atmosphere pressure which is half of that of the initial atmosphere pressure ?

Using the Pressure Equation :

$$P(h) = P_o e^{\frac{-h}{H}}$$

Where, H = 8.4 km

If P(h) = Po/2 when h=h,

$$\frac{P_o}{2} = P_o e^{\frac{-h}{H}} \qquad \Longrightarrow \qquad \frac{h}{H} = \ln(2)$$

$$h = 8.4 \times 0.6931$$

 $h = 5.822 \, km$
 $h = \sim 6 \, km$

	Height (km)	Pressure	
6 x 1	6	Po / 2	Po / 2^1
6 x 2	12	Po / 4	Po / 2^2
6 x 3	18	Po / 8	Po / 2^3
6 x 4	24	Po / 16	Po / 2^4
6 x 5	30	Po / 32	Po / 2^5
	6 n	Po / 2^n	

Using the Pressure Equation : $P(h) = P_o e^{-H}$

Where,
$$H = 8.4 km$$

For the Ideal Gas

Molecular Number Density

$$N(h) = N_o e^{-\frac{h}{H}}$$

If
$$h = H$$
,

$$N(H) = N_o e^{\frac{-H}{H}}$$

$$N(H) = \frac{N_o}{e}$$

$$0.36N_o$$

Height	Mol Num Den	
Н	No / e	0.36 No
2 H	No / e^2	0.13 No
3 H	No / e^3	0.04 No
4 H	No / e^4	0.01 No
5 H	No / e^5	0.006 No
n H	No / e^n	

The Graph of H vs N :

Always Molecular Number Density is decreasing by a factor of e when height is increasing by a multiplies of H

$$N(h) = N_o e^{-\frac{h}{H}}$$

Eg:

At which height from the surface of the Earth, which you can expect the Molecular Number Density which is half of that of the initial value of the Molecular Number Density ?

Molecular Number Density

If N(h) = No/2 when h=h,

$$\frac{N_o}{2} = N_o e^{\frac{-h}{H}}$$

$$h = - 6km$$

	Height (km)	Pressure	
6 x 1	6	No / 2	No / 2^1
6 x 2	12	No / 4	No / 2^2
6 x 3	18	No / 8	No / 2^3
6 x 4	24	No / 16	No / 2^4
6 x 5	30	No / 32	No / 2^5
	6 n	No / 2^n	

That means at 600 km height, the Molecular Number Density is (1/(10^30)) from its initial value.

Consider Linear Distance ; At 600 km height, the Molecular Linear Distance is $(1/(10^{30}))^{(1/3)} = (1/(10^{10}))$ from its initial value.

$$=\left(\frac{1}{10^{30}}\right)^{\frac{1}{3}}$$

Linear Distance of the molecules = Mean Free Path ; This is "Separation between two atoms"

Mean Free Path on the ground level $= 6.0 \times 10^{-8}$ m

Mean Free Path at altitude 600 km height from the ground level :

$$= 6 \times 10^{-8} \times (10^{30})^{\frac{1}{3}}$$
$$= 6 \times 10^{-8} \times 10^{10}$$
$$= 600m$$

That means the **gap between two atoms** on that 600 km height (altitude) from the ground level is very high ! At that level there is no mean "**The gas**", because the **mean free path is very high** (600 m)

Density

D

Using the Molecular Number Density Equation :

$$N(h) = N_o e^{-\frac{h}{H}}$$
 W

 \overline{m}

Vhere,
$$H = 8.4 km$$

Mean Molecular Number Density
$$ho = N imes$$

Total Molecular Number Density

$$\rho(h) = N(h) \times \overline{m}$$
 &

$$\rho_o = N_o \times \overline{m}$$

Density

Density

$$\rho(h) = \rho_o \, e^{-\frac{h}{H}}$$

Where,
$$H = 8.4 km$$

If
$$h = H$$
,

$$\rho(H) = \rho_o e^{\frac{-H}{H}}$$

$$\rho(H)$$

$$0.36\rho_o$$

 ρ_o

e

Density

h $\rho(h) = \rho_o e^{-H}$

Height	Air Density	
Н	ρο / e	0.36 ρο
2 H	ρο / e^2	0.13 ρο
3 H	ρο / e^3	0.04 ρο
4 H	ρο / e^4	0.01 ρο
5 H	ρο / e^5	0.006 ρο
n H	ρο / e^n	

The Graph of H vs ρ :

Always Density is decreasing by a factor of e when height is increasing by a multiplies of H

$$N_{Total} = N_o H e^{-\frac{h}{H}}$$

Case I :

$$N_{Total} = N_o H$$

That means, if the molecular number density of the atmosphere of the Earth varies **linearly** without varying **exponentially**, the atmosphere of the Earth will diminish after ~8.4 km (a scale height).

This gives to us another definition for the Scale Height !

$$N_{Total}_{h\to\infty} = N_o H e^{-\frac{h}{H}}$$

Case II :

$$\frac{N_{Total}}{\substack{h \to \infty \\ 0 \to \infty}} = \frac{N_o H e^{-h/H}}{N_o H} = e^{-h/H}$$
Fraction of the Number of Molecules from the specific height h.

If h=H km Then RATIO = ?,

$$\left(e^{-h/H}\right)_{h\to H} = e^{-H/H} = e^{-1}$$

~ 40 %

60 % of the total molecules exist bellow H (8.4 km)!

If h=2H km Then RATIO = ?,
$$\square$$
 $\left(e^{-h/H}\right)_{h\to 2H} = e^{-2H/H} = e^{-2}$

~ 15 %

85 % of the total molecules exist bellow 2H (16.8 km)!

If h=3H km Then RATIO = ?,
$$(e^{-h/H})_{h\to 3H} = e^{-3H/H} = e^{-3}$$

~ 5 %

95 % of the total molecules exist bellow 3H (16.8 km)!

h (k	xm)	N (h $\rightarrow \infty$) / N (0 $\rightarrow \infty$)	% below h
Η	08.4	36.78	63.21
2 H	16.8	13.53	86.46
3 H	25.2	4.97	95.02
4 H	36.6	1.83	98.16
5 H	42.0	0.67	99.32
6 H	50.4	0.24	99.75
7 H	58.8	0.09	99.90
8 H	67.2	0.03	99.96
9 H	75.6	0.01	99.98
10 H	84.0	0.004	99.995

Sketch the size of the Earth's Atmosphere

20 cm straight line

This is the size of the Earth's Atmosphere

If we assume the Earth to be an Orange which has a radius of 20 cm; then the peel (rind) of the orange is like the atmosphere of the Earth!

1 mm thick line

Temperature Profile of the Earth

Thank You !

© Photoshot