Space & Atmospheric Physics

Space & Atmospheric Physics

Lecture – 02

Planetary Atmospheres

Planetary Atmospheres

Formation and Evolution of Planetary Atmospheres **The Structure of the Terrestrial Atmosphere** The Temperature of the Neutral Atmosphere The Escape of the Atmospheric Gases The Atmospheres of the Planets

The physical parameters of an average atmosphere.

PLANETARY ATMOSPHERES TABLE 1.2-I						7
Altitude in km	Tempe- rature in °K	Density in gr/cm ⁻³	Mean Mol. Weight	Pressure in dyn/cm ²	Mean Free Path in m	Accel. Grav. in cm/s ²
0	288	1.23×10^{-3}	28.96	1.01×10^{6}	$6.63 imes10^{-8}$	981
2	275	1.01×10^{-3}	28.96	$7.95 imes 10^5$	$8.07 imes 10^{-8}$	980
4	262	8.19×10^{-4}	28.96	$6.17 imes 10^5$	$9.92 imes 10^{-8}$	979
6	249	6.60×10^{-4}	28.96	$4.72 imes 10^5$	$1.23 imes 10^{-7}$	979
8	236	5.26×10^{-4}	28.96	$3.57 imes 10^5$	1.55×10^{-7}	978
10	223	4.14×10^{-4}	28.96	2.65×10^5	1.96×10^{-7}	978
20	217	8.89×10^{-5}	28.96	$5.53 imes10^4$	9.14×10^{-7}	975
40	250	4.00×10^{-6}	28.96	2.87×10^3	2.03×10^{-5}	968
60	256	3.06×10^{-7}	28.96	2.25×10^2	2.66×10^{-4}	962
80	181	2.00×10^{-8}	28.96	1.04 imes 10	4.07×10^{-3}	956.
100	210	4.97×10^{-10}	28.88	$3.01 imes 10^{-1}$	1.63×10^{-1}	951
140	714	3.39×10^{-12}	27.20	$7.41 imes10^{-3}$	2.25×10	939
180	1156	5.86×10^{-13}	26.15	$2.15 imes10^{-3}$	1.25×10^2	927
220	1294	1.99×10^{-13}	24.98	$8.58 imes10^{-4}$	3.52×10^2	916
260	1374	8.04×10^{-14}	23.82	$3.86 imes 10^{-4}$	8.31×10^2	905
300	1432	3.59×10^{-14}	22.66	$1.88 imes 10^{-4}$	1.77×10^3	894
400	1487	6.50×10^{-15}	19.94	$4.03 imes 10^{-5}$	8.61×10^3	868
500	1499	1.58×10^{-15}	17.94	$1.10 imes 10^{-5}$	$3.19 imes 10^4$	843
600	1506	4.64×10^{-16}	16.84	3.45×10^{-6}	$1.02 imes 10^5$	819
700	1508	1.54×10^{-16}	16.17	1.19×10^{-6}	2.95×10^{5}	796

Altitude	Density	The graph of h (in km) vs Density	
in km	in gr/cm	(in gr cm^(-3))	
0	1.23×10^{-3}		
2	1.01×10^{-3}		
4	$8.19 imes 10^{-4}$		
6	$6.60 imes 10^{-4}$	Enter the data as two 1D arrays	
8	$5.26 imes 10^{-4}$		
10	4.14×10^{-4}		

(* This program is to plot the Earth's parameters w.r.t altitude from the Earth Surface *)

```
hgh = {0, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100, 140, 180, 220,

260, 300, 400, 500, 600, 700}; (* Altitude *)

rho = {1.23 * 10^(-3), 1.01 * 10^(-3), 8.19 * 10^(-4),

6.60 * 10^(-4), 5.26 * 10^(-4), 4.14 * 10^(-4), 8.89 * 10^(-5),

4.00 * 10^(-6), 3.06 * 10^(-7), 2.00 * 10^(-8), 4.97 * 10^(-10),

3.39 * 10^(-12), 5.86 * 10^(-13), 1.99 * 10^(-13),

8.04 * 10^(-14), 3.59 * 10^(-14), 6.50 * 10^(-15),

1.58 * 10^(-15), 4.64 * 10^(-16), 1.54 * 10^(-16)};

(* Density *)
```

The graph of h (in km) vs Density (in gr cm^(-3))

```
dl = Transpose[{rho, hgh}]; (* to get the h vs Rho data set *)
ListPlot[dl, PlotJoined → True,
PlotStyle → {RGBColor[1, 0, 0], PointSize[0.02]},
PlotLabel → "Graph of h vs Density",
AxesLabel → {"Rho (g/cm^3)", "h (km)"}]
(* To Plot the h vs Rho graph *)
Plot the graph....
```


To model the data set ...

f = Fit[data, {h, 1}, h] Modeling (* To find a suitable polynomial or relationship *) g2 = Plot[f, {h, hgh[[1]], hgh[[Length[hgh]]]}, PlotStyle → {RGBColor[0, 0, 1], PointSize[0.02]}] (* To plot the predicted model *) Show[{g1, g2}]

f = Fit[data, {h, 1}, h] Modeling
(* To find a suitable polynomial or relationship *)
g2 = Plot[f, {h, hgh[[1]]}, hgh[[Length[hgh]]]},
PlotStyle → {RGBColor[0, 0, 1], PointSize[0.02]}]
(* To plot the predicted model *)
Show[{g1, g2}]

f = Fit[data, {h, 1}, h] Modeling (* To find a suitable polynomial or relationship *) g2 = Plot[f, {h, hgh[[1]]}, hgh[[Length[hgh]]]}, PlotStyle → {RGBColor[0, 0, 1], PointSize[0.02]}] (* To plot the predicted model *) Show[{g1, g2}]

		{h^2, h, 1}
Sin[x]	Cos[x]	Tan[x]
x^2	x^3	
1/x	1/x^2	1/x^3
Exp[x]	Exp[-x]	Exp[- a x]

f = Fit[data, {h, 1}, h] Modeling
(* To find a suitable polynomial or relationship *)
g2 = Plot[f, {h, hgh[[1]]}, hgh[[Length[hgh]]]},
PlotStyle → {RGBColor[0, 0, 1], PointSize[0.02]}]
(* To plot the predicted model *)
Show[{g1, g2}]

Exp[- a x] a = 1, 2, 3, a = $\frac{1}{2}$, $\frac{1}{3}$, ... a = $\frac{1}{8} - \frac{1}{9}$

The graph of h (in km) vs Density (in gr cm^(-3))

Altitude	Mean Mol.
in km	Weight
0	28.96
2	28.96
4	28.96
6	28.96
8	28.96
10	28.96
20	28.96
40	28.96
60	28.96
80	28.96
100	28.88
140	27.20
180	26.15
220	24.98
260	23.82
300	22.66
400	19.94
500	17.94
600	16.84
700	16.17

The graph of h (in km) vs Mean Molecular Weight

To model the data set ...

To Model

Altitude	Mean Mol.		
шкш	Weight		
0	28.96		
2	28.96		
4	28.96		
6	28.96		
8	28.96		
10	28.96		
20	28.96		
40	28.96		
60	28.96		
80	28.96		
100	28.88		
140	27.20		
180	26.15		
220	24.98		
260	23.82		
300	22.66		
400	19.94		
500	17.94		
600	16.84		
700	16.17		

The graph of h (in km) vs m

Altitude	Pressure	
in km	in dyn/cm ²	
0	1.01 × 10 ⁶	
2	7.95×10^5	
4	6.17×10^5	
6	$4.72 imes 10^5$	
8	$3.57 imes 10^5$	
10	$2.65 imes 10^5$	
20	$5.53 imes10^4$	
40	2.87×10^3	
60	2.25×10^2	
80	1.04 imes 10	
100	3.01×10^{-1}	
140	7.41×10^{-3}	
180	$2.15 imes 10^{-3}$	
220	8.58×10^{-4}	
260	3.86×10^{-4}	
300	1.88×10^{-4}	
400	4.03×10^{-5}	
500	1.10×10^{-5}	
600	3.45×10^{-6}	
700	1.19×10^{-6}	

The graph of h (in km) vs Pressure (in dyn/cm^2)

To model the data set ...

Altitude in km	Pressure in dyn/cm ²	The	graph of	h (in km) v (in d	's Pressure lyn/cm^2)	9
0	$1.01 \times 10^{\circ}$		Gra	nh of Pressure v	s h	
2	7.93×10^{5}	Pressure dyn c	cm^2	ph of Tressure v	5 11	
4	0.17×10^{5}	1 10 ⁶ ⊦				
8	4.72×10^{5}	1 10				
10	2.65×10^{5}	800.000			1.	/
20	5.53×10^{4}	800000			n/_	
40	2.87×10^{3}		D(h	$\rightarrow \rightarrow \nu$		H
60	2.25×10^{2}	600 000		ノーレ	<i>ie</i>	
80	1.04×10			/ 1		
100	3.01×10^{-1}	400 000		Where n	- 991095	and
140	7.41×10^{-3}	-		where, p	-))10))	and
180	$2.15 imes 10^{-3}$	200 000		$H \subset [S = 0]$	$1 \sim 84$	
220	$8.58 imes10^{-4}$] '` 0.+	
260	$3.86 imes 10^{-4}$					h Im
300	$1.88 imes 10^{-4}$		100 200	300 400	500 600	700 ^{II} KIII
400	$4.03 imes 10^{-5}$					
500	$1.10 imes 10^{-5}$					
600	$3.45 imes 10^{-6}$					
700	$1.19 imes 10^{-6}$					

To model the data set ...

To Model

Altitude	Mean Free
in km	Path in m
0	6.63 × 10 ⁻⁸
2	8.07×10^{-8}
4	9.92×10^{-8}
6	$1.23 imes 10^{-7}$
8	1.55×10^{-7}
10	1.96×10^{-7}
20	9.14×10^{-7}
40	2.03×10^{-5}
60	2.66×10^{-4}
80	4.07×10^{-3}
100	1.63×10^{-1}
140	2.25×10
180	1.25×10^{2}
220	3.52×10^{2}
260	8.31×10^{2}
300	1.77×10^{3}
400	8.61×10^{3}
500	3.19×10^{4}
600	1.02×10^{5}
700	2.95×10^{5}

The graph of h (in km) vs Mean Free Path (in m)

Altitude in km	Accel. Grav. in cm/s ²	Acceleration (in cm/s^2)
0	981	
2	980	Enter the data as two 1D arrays
4	979	
6	979	Graph of h vs Gra Acc
8	978	h km
10	978	
20	975	
40	968	600
60	962	
80	956.	500
100	951	
140	939	400
180	927	
220	916	
260	905	
300	894	
400	868	
500	843	
600	819	
700	796	850 900 950 g cm s 2

To model the data set ...

Altitude in km	Accel. Grav. in cm/s ²
0	981
2	980
4	979
6	979
8	978
10	978
20	975
40	968
60	962
80	956.
100	951
140	939
180	927
220	916
260	905
300	894
400	868
500	843
600	819
700	796

The graph of h (in km) vs Gravitational Acceleration (in cm/s^2)

Part by Part Modeling...

Altitude in km	Tempe- rature in °K	
0	288	
2	275	
4	262	
6	249	
8	236	
10	223	
20	217	
40	250	
60	256	
80	181	
100	210	
140	714	
180	1156	
220	1294	
260	1374	
300	1432	
400	1487	
500	1499	
600	1506	
700	1508	

The graph of h (in km) vs T (in K)

(* This program is to plot the Earth's parameters w.r.t altitude from the Earth Surface *)	
hgh = {0, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300, 400, 500, 600, 700}; (* Altitude *)	
tem = {288, 275, 262, 249, 236, 223, 217, 250, 256, 181, 210, 715, 1156, 1294, 1374, 1432, 1487, 1499, 1506, 1508}; (* Temperature *)	
<pre>d1 = Transpose[{tem, hgh}]; (* to get the h vs T data set *)</pre>	
ListPlot[d1, PlotJoined → True, PlotStyle → {RGBColor[1, 0, 0], PointSize[0.02]}, PlotLabel → "Graph of h vs Temperature", AxesLabel -	• {"T (K)", "h (km)"}];
(* To Plot the h vs T graph *)	
(* To model the data set in T vs h format *)	
data = Transpose[{hgh, tem}];	
g1 = ListPlot[data, PlotStyle → {RGBColor[0, 1, 0], PointSize[0.02]}, PlotLabel → "Graph of Temperature vs h", AxesLabel → {"h (km)",	"T (K)"}];
nnn = 11; (* Division point of the height *)	
tt1 = Take[data, nnn];	
tt2 = Take[data, - (nnn - 1)];	
gtt1 = ListPlot[tt1, PlotStyle → {RGBColor[0, 1, 0], PointSize[0.02]}, PlotLabel → "Graph of Temperature vs h", AxesLabel → {"h (km)"	, "T (K)"}]
gtt2 = ListPlot[tt2, PlotStyle → {RGBColor[0, 1, 1], PointSize[0.02]}, PlotLabel → "Graph of Temperature vs h", AxesLabel → {"h (km)"	, "T (K)"}]
<pre>s1 = Show[{gtt1, gtt2}];</pre>	
(* g1=ListPlot[data,PlotJoined→True,PlotStyle→ {RGBColor[0,1,0], PointSize[0.02]}, PlotLabel→ "Graph of Temperature vs h",AxesLaby	el→ {"h (km)","T (K)"}] *)
(* To Plot the T vs h graph *)	
<pre>n1 = 5; (* Order of the polynomai *)</pre>	
<pre>ph1 = Table[h^i, {i, 0, n1}]; (* to create coifficient of polynomial *)</pre>	
Print["Suitable First Polynomail Function is : "]	
f1 = Fit[tt1, ph1, h] (* To find a suitable polynomial or relationship *)	
gf1 = Plot[f1, {h, hgh[[1]], hgh[[nnn]]}, PlotStyle → {RGBColor[0, 0, 1], PointSize[0.02]}, PlotRange → Full] ; (* To plot the predicted	d model *)
<pre>s1 = Show[{gtt1, gf1}]</pre>	
n2 = 5; (* Order of the polynomai *)	
<pre>ph2 = Table[h^i, {i, 0, n2}]; (* to create coifficient of polynomial *)</pre>	
Print["Suitable Second Polynomail Function is : "]	
f2 = Fit[tt2, ph2, h] (* To find a suitable polynomial or relationship *)	
gf2 = Plot[f2, {h, hgh[[nnn]], hgh[[Length[hgh]]]}, PlotStyle → {RGBColor[1, 0, 1], PointSize[0.02]}, PlotRange → Full ; (* To plot the	e predicted model *)
<pre>s2 = Show[{qtt2, gf2}]</pre>	
$mm1 = f1 / h \rightarrow Take[hqh, nnn - 1];$	
$\operatorname{num}^2 = f1 / .h \rightarrow \operatorname{Take}[\operatorname{hch}, -(\operatorname{nnn} - 1)];$	
tempm = Join [mm1, mm2];	
datam = Transpose[{hgh, tempm}];	
gtm = ListPlot[datam, PlotStyle + {RGBColor[0, 1, 1], PointSize[0.02]}, PlotLabel + "Graph of Temperature vs h", AxesLabel + {"h (km)	", "T (K)"}];
Show [{q1, qtm}]	

The graph of h (in km) vs T (in K)

Planetary Atmospheres

Planetary Atmospheres

Formation and Evolution of Planetary Atmospheres The Structure of the Terrestrial Atmosphere **The Temperature of the Neutral Atmosphere** The Escape of the Atmospheric Gases The Atmospheres of the Planets

The Temperature of the Neutral Atmosphere

 $T_s = 5778K \ (\sim 6000K)$

 $R_{\rm s} = 695500 \, km \, (\sim 7 \times 10^5 \, km)$

d = 149598000 km (1AU)

Connect equation 1 & 2;

$$\Rightarrow \frac{\sigma T_s^4 \times 4\pi R_s^2}{4\pi d^2} \times \pi R^2 = e \sigma T_e^4 \times 2\pi R^2$$

Where e should be [0-1]

$$\square T_e^4 = \frac{\sigma T_s^4 \times 4\pi R_s^2 \times \pi R^2}{4\pi d^2 \times e \ \sigma \times 2\pi R^2} \square T_e = \left(\frac{T_s^4 \times R_s^2}{e \ d^2 \times 2}\right)^{\frac{1}{4}}$$

The Temperature of the Neutral Atmosphere

Let us first consider the Earth as a rapidly rotating solid sphere of radius R. Let the reflectivity of this sphere be such that it reflects a fraction A (Albedo) and absorbs the remaining fraction (1 - A) of the incoming solar radiation. Let the sphere also radiate like a black body at an effective temperature T_{e} .

The Energy absorbed by the Earth = $\sigma T_e^4 \times 4\pi R^2$

Using Stephan's Law

The Energy emitted by the Earth = $(1 - A) \times S_o \times \pi R^2$

Where So is the Solar Flux at 1AU.

Under condition of thermal equilibrium;

The Energy absorbed by the Earth = The Energy emitted by the Earth

$$\sigma T_e^4 \times 4\pi R^2 = (1-A) \times S_o \times \pi R^2$$
$$4\sigma T_e^4 = (1-A)S_o \longrightarrow 3$$

The Total Energy emitted per second by the Sun =

$$\sigma T_S^4 \times 4\pi R_S^2$$

The Total Energy emitted per second by the Sun = $\sigma T_s^4 \times 4\pi R_s^2$

The Energy Density (Energy per unit area) at our orbit =

$$\frac{\sigma T_s^4 \times 4\pi R_s^2}{4\pi d^2}$$

This is called Solar Flux, So at 1AU (at d or at our orbit)

$$\therefore \quad S_o = \sigma T_S^{4} \left(\frac{R_S}{d}\right)^2 \longrightarrow 2$$

Connect equation 1 & 2;

$$\Rightarrow 4\sigma T_e^{4} = (1-A)S_o \Rightarrow 4\sigma T_e^{4} = (1-A)\sigma T_s^{4} \left(\frac{R_s}{d}\right)^2$$
$$\Rightarrow T_e^{4} = \frac{(1-A)}{4} \left(\frac{R_s}{d}\right)^2 T_s^{4} \Rightarrow T_e^{4} = \left(\frac{R_s}{d}\right)^{\frac{1}{2}} \left(\frac{1-A}{4}\right)^{\frac{1}{4}} T_s$$

Solar Flux at 1 AU

$$S_o = \sigma T_s^4 \left(\frac{R_s}{d}\right)^2$$

Where,
 $\sigma = 5.67 \times 10^{-8} J s^{-1} m^{-2} K^{-4}$
 $T_s = 5778K$ (~ 6000K)
 $R_s = 695500 km (~ 7 \times 10^5 km)$
 $d = 149598000 km (1AU)$
 $S_o = 1365.95 J m^{-2} s^{-1}$ in our orbit...

The value of the effective temperature of the Earth,

$$T_{e} = \left(\frac{R_{s}}{d}\right)^{1/2} \left(\frac{1-A}{4}\right)^{1/4} T_{s}$$

Where,

A = 0.4 Albedo of the Earth...

$$T_e = 245.181K$$

The value of the effective temperature of the Earth,

$$T_e = 245.181K$$

The value of Te is ~ 245 K. It is approximately 45 K lower than the average ground temperature, Tg (Tg = 290 K) of the Earth. The difference is due to the Green House Effect of the terrestrial atmosphere which act as follows.

The incident Solar radiation has its maximum intensity in the visible portion of the spectrum and passes with practically no attenuation through the transparent atmosphere of the Earth. Thus, the (1 - A) fraction of the Solar radiation that is not reflect back, is absorbed by the ground and heats it up. The Earth radiates as a black body at a temperature T_g = 290 K, which is the average temperature of its surface. At T_g = 290 K most of the emitted energy is in the infra-red region.

The maximum intensity, according to Wien's Law, occures at a wavelength $\lambda_m = 10^{(-5)}$ m.

$$\lambda_m T = \frac{hc}{6k} \approx 0.003 mK$$

The maximum intensity, according to Wien's Law, occures at a wavelength $\lambda_m = 10^{(-5)}$ m.

$$\lambda_m T = \frac{hc}{6k} \approx 0.003 mK$$

$$\lambda_m = \frac{0.003}{T}$$

$$\lambda_m = \frac{0.003}{290}$$

$$\lambda_m = 10^{-5} m$$

The infra-red spectrum is strongly absorbed by the tri-atomic molecules of the atmosphere, namely CO₂, H₂O and O₃. The energy absorbed by these molecules is re-emitted in part toward the outer space and in part toward the ground, thus providing an additional heating source for the surface of the Earth.

Upward flux from the ground Downward flux from the tri-atomic molecules of the atmosphere

+

flux of Solar radiation absorbed by the Earth

+
$$4\pi R^2 \sigma T_a$$

The opacity in the infra-red of the terrestrial atmosphere

$$F = \sigma T_e^4 \text{ and } \tau = \tau_o \implies F_d = F \frac{3\tau}{4} \qquad \because \qquad F_d = \sigma T_e^4 \frac{3\tau_o}{4}$$
Using Eq 4: $\sigma T_g^4 = F_d + \sigma T_e^4$
 $\sigma T_g^4 = \sigma T_e^4 \frac{3\tau_o}{4} + \sigma T_e^4$
 $\sigma T_g^4 = r_e \left(1 + \frac{3\tau_o}{4}\right)^{1/4}$

It has been observed that approximately 85% of the infra-red radiation is absorbed in the atmosphere and only 15% of the ground intensity (I_g) makes it through the Earth's atmosphere.

How to find \int_0 :

$$I = I_g e^{-\tau_o} \qquad \Rightarrow \qquad \tau_o = -\ln\left(\frac{I}{I_g}\right)$$

$$Where, \qquad \frac{I}{I_g} = \frac{15}{100} = 0.15$$

$$\Rightarrow \qquad \tau_o = -\ln(0.15)$$

$$\Rightarrow \qquad \tau_o = -(-1.89712)$$

$$\Rightarrow \qquad \tau_o = 1.89712 \approx 1.9$$

The value of ground temperature of the Earth,

$$T_g = T_e \left(1 + \frac{3\tau_o}{4}\right)^{\frac{1}{4}} \longrightarrow T_g = 245 \left(1 + \frac{3(1.9)}{4}\right)^{\frac{1}{4}} \longrightarrow T_g \approx 305 K$$

The value of ground temperature of the Earth,

$$T_e = 305K$$

The temperature obtained in the above equation is somewhat higher than the average temperature on the surface on the Earth, but still it describes to a good approximation the Green House Effect. The small excess we have found in T_g occurs in part because we have neglected the convective transport of heat in the lower atmosphere, which would tend to cool down the surface of the Earth.

Note that the temperature of the air T_a near the ground is given by (A-30, appendix I), which yields a value for T_a lower than T_g .

The discontinuity between T_g and T_a is in practice removed through conduction and convection and tends to lower the value of T_g obtained above.

This figure describes the balance between the radiation received and the radiation emitted by the Earth, including the green house effect.

A diagram showing the balance of heat, including the G.H.E. in the atmosphere of the Earth.

A diagram showing the balance of heat, including the G.H.E. in the atmosphere of the Earth.

It is significant to note that if the Earth did not have an atmosphere, or if the terrestrial atmosphere did not have any absorbing molecules such as CO₂, H₂O and O₃, we would have $T_0=0$ and $T_g = T_e = 245$ K = -28 °C. This shows the importance of the green house effect, i.e. the trapping of the infra-red radiation emitted from the ground by the tri-atomic molecules of the atmosphere, and emphasizes the critical role of the minor atmospheric constituents.

