

UNIVERSITY OF SRI JAYEWARDANEPURA

B.Sc. General/Special Degree Third Year Course Unit Examination -

October, 2018.

PHY 310 1.0 / PHY 329 1.0 / PHY 373 1.0 - Space Physics - I

Time : One hour

Answer all questions

<u>01.</u> Show that the variation of molecular number density N(h) with the altitude h of an isothermal atmosphere which is consisting of only one type of gas molecules of mass m can be expressed as,

$$N(h) = N_0 e^{-\frac{h}{H}} ,$$

assuming T and g are constants where, $H = \frac{kT}{mg}$ and T is the temperature, g is the acceleration due to gravity and k is the Boltzmann Constant.

In the Earth's atmosphere, the major constituents are Nitrogen and Oxygen having average molecular mass of 4.8×10^{-26} kg. The total number density $N_0 = 2.54 \times 10^{19}$ cm⁻³ at the ground.

Estimate the molecular number density at an altitude of 6.0 km and 8.4 km.

You may assume that, $g = 10 \text{ ms}^{-2}$, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$ and T = 288 K.

P. T. O

<u>02.</u> Show that the resonance frequency f_p of the plasma oscillations of an ionized electrically neutral medium containing free charges of mass m is given by;

$$f_p = \frac{e}{2 \pi} \left(\frac{N}{\varepsilon_o m} \right)^{\frac{1}{2}}$$

Where, N is the number density of free charges, $\varepsilon_o = 8.85 \times 10^{-12} Fm^{-1}$ and $e = 1.6 \times 10^{-19} C$.

Estimate the highest frequency that can be reflected from the ionosphere at normal incidence if the maximum electron density in the ionosphere is $2.0 \times 10^{12} m^{-3}$. (Mass of the electron is $9.1 \times 10^{-31} kg$)

Which of the following radio wave bands get reflected from the ionosphere at normal incidence?

Band	Frequency Range
VLF	3 kHz – 30 kHz
LF	30 kHz – 300 kHz
MF	300 kHz – 3 MHz
SW	3 MHz – 30 MHz
VHF	30 MHz – 300 MHz
UHF	300 MHz – 3 GHz
