

UNIVERSITY OF SRI JAYEWARDANEPURA

B.Sc. General/Special Degree Third Year Course Unit Examination – October, 2017.

PHY 329 1.0 / PHY 373 1.0 - Space Physics - I

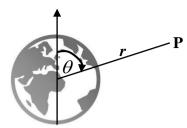
Time: One hour

Answer all questions

O1. Show that the variation of Pressure P(h) of an isothermal atmosphere consisting of only one type of gas molecules of mass m with the altitude h can be expressed as,

$$P(h) = P_0 e^{-\frac{h}{H}}$$

assuming T and g are constants where, $H = \frac{kT}{mg}$ and T is the temperature and g is the acceleration due to gravity.


In the Earth's atmosphere, the major constituents are nitrogen and oxygen having an average molecular mass of 4.8×10^{-26} kg. The Atmospheric Pressure $P_0 = 1.0 \times 10^5$ Nm⁻² at the ground level.

Estimate the Atmospheric Pressure at an altitude of 6.0 km. You may assume that, $g = 10 \text{ ms}^{-2}$, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$ and T = 288 K.

<u>02.</u> Explain the importance of **Ozone layer** for maintaining a life form comprehensively on Earth.

Explain how far gases such as "CFC" can damage the Ozone layer.

What are the steps that you can take to protect the Ozone layer?

You are given the following mathematical equation for the Earth magnetic field intensity, $H(r,\theta)$ at any point P at a distance r from the center of the Earth and making an angle θ with the vertical, as shown in the figure above.

$$H(r, \theta) = \frac{\mu_o}{4 \pi} \cdot \frac{M}{r^3} \cdot (1 + 3 \cos^2 \theta)^{\frac{1}{2}}$$

Where, M is the Dipole Moment of the Earth and the other symbols have their usual meanings.

The intensity of the Earth's Magnetic Field at the equator is 40,000 nT.

Calculate the Dipole Moment of the Earth. ($\mu_0 = 45 \times 10^{-7} Nm^2 wb^{-2}$ and the radius of the Earth is $6.4 \times 10^6 m$)

Hence, **determine** the Magnetic Field intensity at the poles of the Earth.

<u>04.</u> What is the importance of the **E - layer** in the ionosphere of the Earth atmosphere for the SW radio communication?

What is meant by the **multi-reflection** of radio-waves?

What kind of difficulties you would expect in multi-reflection transmission?

Write down the relationship between **maximum possible range** (R) of a direct-transmitted radio waves with its **frequency** (f).

What would be the maximum possible ranges for radio waves of frequencies 10 kHz and 100 kHz in direct-transmission?
