
Space Physics

PHY 310 1.0 & PHY 373 1.0 Space Physics I

Examination Paper

You should Answer

All the Questions

PHY 310 1.0 & PHY 373 1.0 - Space Physics I

Course Contents:

Planetary Atmospheres

(Formation and Evolution of Planetary Atmospheres, The structure of the Terrestrial Atmosphere, The Escape of the Atmospheric Gases, The Atmospheres of the Earth)

Earth's Atmosphere

(Retaining of Gases in the Earth, Barometric Equation & Scale Height, Number Density Profiles, Atmospheric Regions, Temperature Profiles)

The Ionosphere of the Earth

(Introduction, The Chapman Layer Theory, Plasma Frequency, Collision Frequency and Absorption)

The Magnetosphere of the Earth

(The Dipole Magnetic Field, The Earth's Magnetic Fields, The Radiation Belts)

The Active Sun

(Introduction of the Active Sun, <u>The</u> Main Regions of the Sun, Sunspots and the Solar Cycle, Radio and X-ray Bursts from the Sun, Effect of the Solar Cycle)

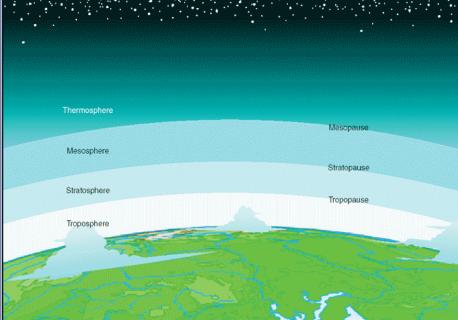
Radio Wave Communication

(Reflection of Radio Waves, Absorption of Radio Waves, Complex Refractive Index, Reflection Heights, Ionosphere – Sounding Techniques, Pulse Reflection Methods, Expectable Crisis of Radio Wave Communication)

PHY 310 1.0 & PHY 373 1.0 - Space Physics I

References:

- * Space Physics and Space Astronomy Michael D. Papagiannis
- * Space Physics May-Britt Kallenrode
- * Horizons Exploring the Universe Michael A. Seeds
- * Sun, Solar Cycle, Ionosphere, Absorption cross section, Maxwell's equations, <u>Atmospheric dispersion modeling</u>, Wave plate – Wikipedia (Internet)
- * Sunspot Numbers IPS Solar Conditions (Monthly Sunspot Numbers) (Internet)
- * Solar Physics NASA Marshall Solar Physics (Internet)
- * Ionospheric Physics of Radio Wave Propagation Edwin C. Jones (Internet)

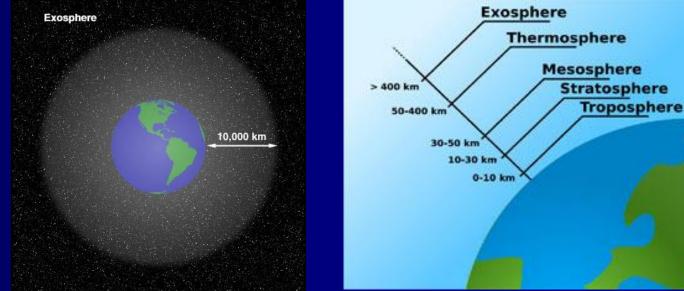

Method of Assessment: End of the Semester Theory Examination - 100%

Planetary Atmospheres

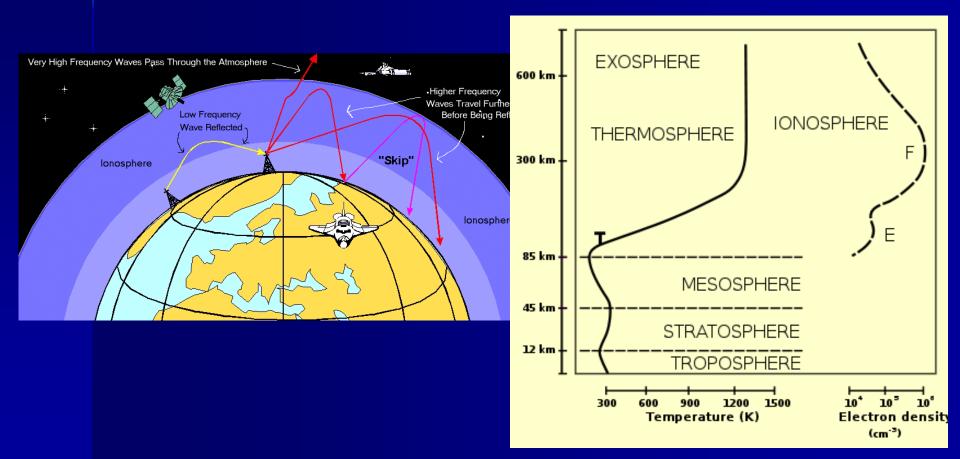
Planetary Atmospheres

The Structure of the Terrestrial Atmosphere The Temperature of the Neutral Atmosphere The Escape of the Atmospheric Gases The Atmospheres of the Earth

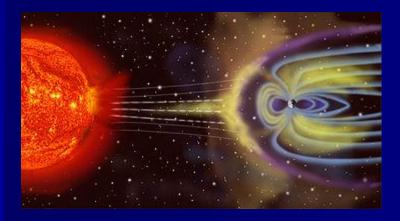
To facilitate the study of the atmosphere, we usually divide it into shells with common properties. These shells bear names ending in sphere (e.g., stratosphere) and the boundaries between them follow the name of the lower layer with the ending pause (e.g., stratopause). The several layers into which the atmosphere is divided vary depending on the principle properties of the atmosphere under investigation. One of the most common classifications is when the temperature is used as the guiding parameter. In this case we recognize the following regions of the terrestrial atmosphere:

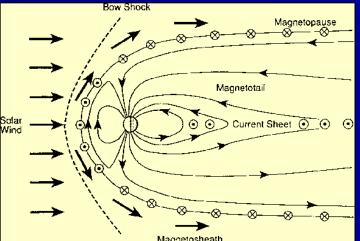

As we mentioned earlier, the atmosphere is divided in to different layers for different subjects of study. We have already seen the division according to temperature. When our main interest is the chemical composition of the terrestrial atmosphere, we recognize the following regions.

Other regions of the upper atmosphere characterized by some common property other than temperature or chemical composition are the following:


Exosphere:

It defines the regions from which neutral atoms can escape the gravitational attraction of the Earth and extends from approximately 600 km on up.


The Structure of the Terrestrial Atmosphere Ionosphere:

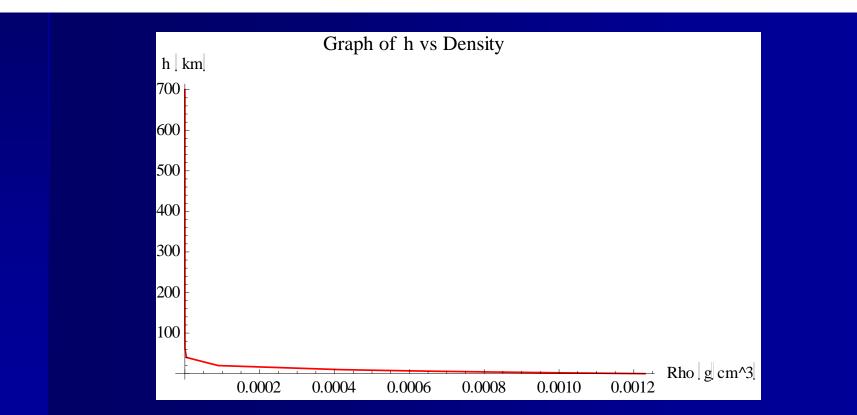

This is the region where a partial ionization of the atmospheric constituents takes place. The ionosphere extends from about 70 km on up and reaches a maximum of ionized particle density around 300 km.

Magnetosphere:

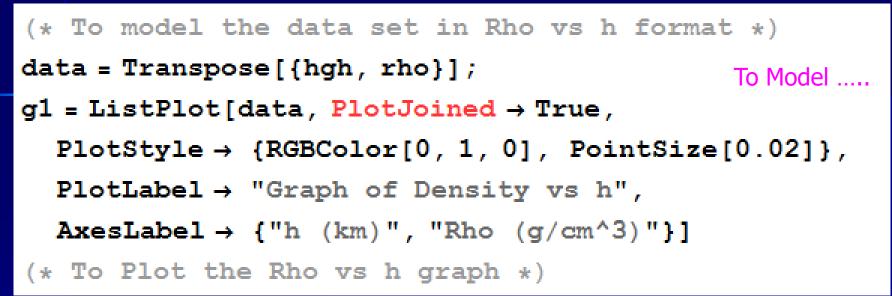
This is the region where the motion of the ionized particles is governed by the Earth's magnetic field. It is rather difficult to define the beginning of the magnetosphere, and one can only roughly place it near 1000 km. The upper limit of the magnetosphere is clearly defined and as expected it is called the magnetopause. On the sunlit side of the Earth the magnetopause occurs at approximately 10 earth radii, whereas, on the night side of our planet it takes the shape of a long (100 earth radii) cylindrical magnetic tail. The magnetopause defines the boundary of the terrestrial domain beyond which, after a transitional region which is called the magneto-sheath, stars the vast realm of the interplanetary space.

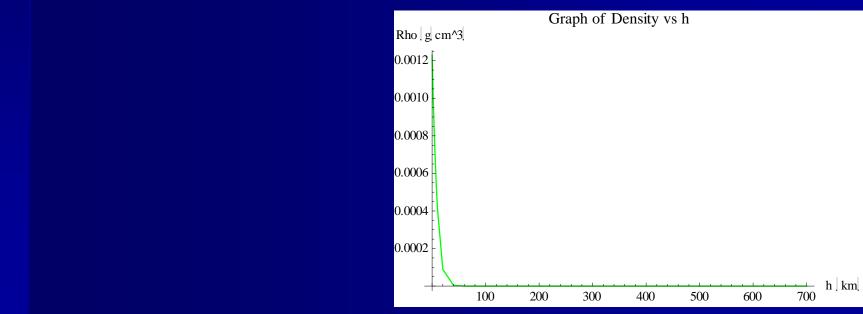
The physical parameters of an average atmosphere.

		PLA	NETARY AT			7
Altitude in km	Tempe- rature in °K	Density in gr/cm ⁻³	Mean Mol. Weight	Pressure in dyn/cm ²	Mean Free Path in m	Accel. Grav. in cm/s ²
0	288	1.23×10^{-3}	28.96	1.01×10^{6}	6.63 × 10 ⁻⁸	981
2	275	1.01×10^{-3}	28.96	$7.95 imes 10^5$	$8.07 imes 10^{-8}$	980
4	262	8.19×10^{-4}	28.96	$6.17 imes 10^5$	9.92×10^{-8}	979
6	249	6.60×10^{-4}	28.96	$4.72 imes 10^5$	$1.23 imes 10^{-7}$	979
8	236	5.26×10^{-4}	28.96	$3.57 imes 10^5$	1.55×10^{-7}	978
10	223	4.14×10^{-4}	28.96	2.65×10^5	1.96×10^{-7}	978
20	217	8.89×10^{-5}	28.96	$5.53 imes 10^4$	9.14×10^{-7}	975
40	250	4.00×10^{-6}	28.96	$2.87 imes 10^3$	$2.03 imes 10^{-5}$	968
60	256	3.06×10^{-7}	28.96	2.25×10^2	$2.66 imes 10^{-4}$	962
80	181	2.00×10^{-8}	28.96	1.04×10	4.07×10^{-3}	956.
100	210	4.97×10^{-10}	28.88	3.01×10^{-1}	1.63×10^{-1}	951
140	714	3.39×10^{-12}	27.20	7.41×10^{-3}	2.25 imes 10	939
180	1156	5.86×10^{-13}		$2.15 imes 10^{-3}$	$1.25 imes 10^2$	927
220	1294	1.99×10^{-13}		8.58×10^{-4}	3.52×10^2	916
260	1374	8.04×10^{-14}		3.86×10^{-4}	8.31×10^2	905
300	1432	3.59×10^{-14}		1.88×10^{-4}	1.77×10^3	894
400	1487	6.50×10^{-15}		$4.03 imes 10^{-5}$	$8.61 imes 10^3$	868
500	1499	1.58×10^{-15}		$1.10 imes 10^{-5}$	$3.19 imes 10^4$	843
600	1506	4.64×10^{-16}		$3.45 imes 10^{-6}$	$1.02 imes 10^5$	819
700	1508	1.54×10^{-16}		$1.19 imes10^{-6}$	2.95×10^5	796

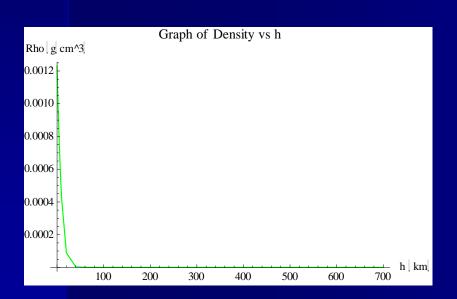

The graph of h (in km) vs Density (in gr cm^(-3))

ltitude	Density
in km	in gr/cm ⁻³
0	1.23×10^{-3}
2	1.01×10^{-3}
4	$8.19 imes 10^{-4}$
6	$6.60 imes10^{-4}$
8	$5.26 imes 10^{-4}$
10	4.14×10^{-4}
20	8.89×10^{-5}
40	4.00×10^{-6}
60	3.06×10^{-7}
80	2.00×10^{-8}
100	4.97×10^{-10}
140	3.39×10^{-12}
180	5.86×10^{-13}
220	1.99×10^{-13}
260	8.04×10^{-14}
300	3.59×10^{-14}
400	6.50×10^{-15}
500	1.58×10^{-15}
600	$4.64 imes 10^{-16}$
700	$1.54 imes 10^{-16}$

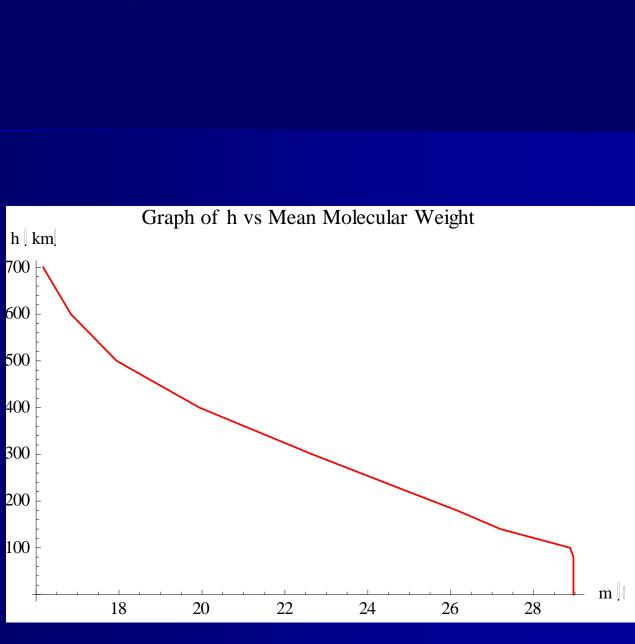

A


The graph of h (in km) vs Density (in gr cm^(-3))

```
dl = Transpose[{rho, hgh}]; (* to get the h vs Rho data set *)
ListPlot[dl, PlotJoined → True,
PlotStyle → {RGBColor[1, 0, 0], PointSize[0.02]},
PlotLabel → "Graph of h vs Density",
AxesLabel → {"Rho (g/cm^3)", "h (km)"}]
(* To Plot the h vs Rho graph *)
Plot the graph....
```

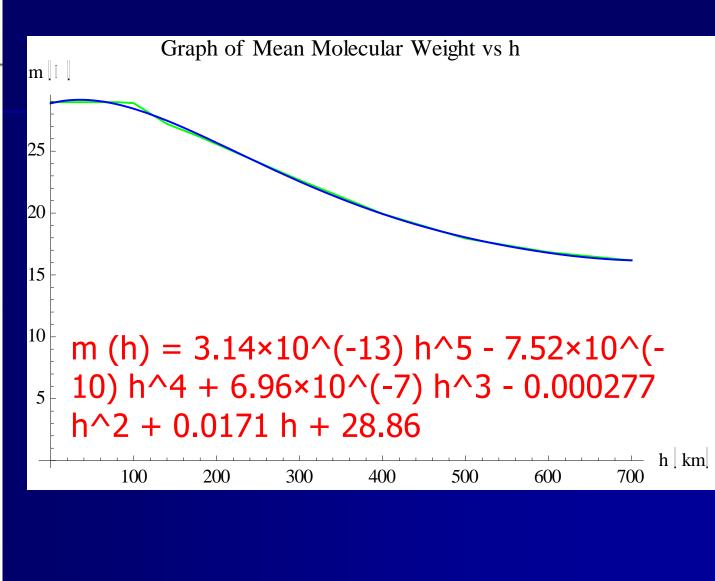


To model the data set ...

Modeling Part ...

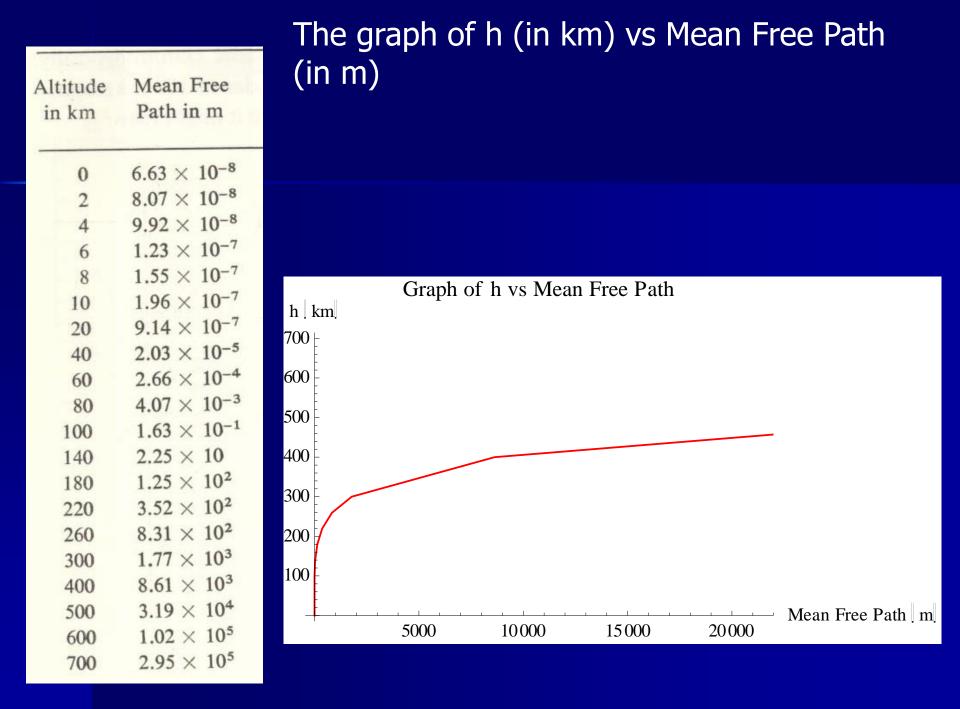

f = Fit[data, {h, 1}, h] Modeling (* To find a suitable polynomial or relationship *) g2 = Plot[f, {h, hgh[[1]]}, hgh[[Length[hgh]]]}, PlotStyle → {RGBColor[0, 0, 1], PointSize[0.02]}] (* To plot the predicted model *) Show[{g1, g2}]

Exp[- a x] a = 1, 2, 3, a = $\frac{1}{2}$, $\frac{1}{3}$, ... a = $\frac{1}{8}$ - $\frac{1}{9}$

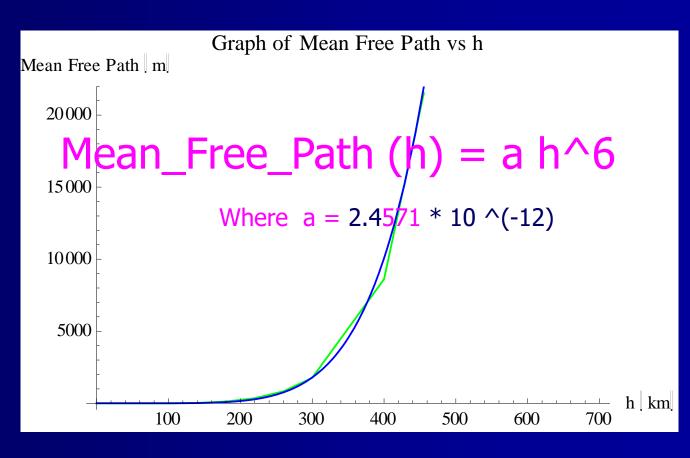
Altitude in km	Density in gr/cm ⁻³	The gra	ph of	Densit	y (in gr	⁻ cm^((-3))v	vs h (ir	ı km)	
0	$1.23 imes 10^{-3}$									
2	1.01×10^{-3}									
4	8.19×10^{-4}									
6	$6.60 imes 10^{-4}$									
8	5.26×10^{-4}			Gr	aph of D	ensity v	s h			
10	4.14×10^{-4}	Rho g cm^3		UI UI		clisity v	5 11			
20	8.89×10^{-5}	- -								
40	4.00×10^{-6}	0.0012						h/		
60	3.06×10^{-7}	0.0010		(h)	`		′	ี <i>่ไ</i> ป		
80	2.00×10^{-8}	0.0010	\cap	(h)		: <i>V</i>	P'	/ 11		
100	4.97×10^{-10}	0.0000	P		ノー		C			
140	$3.39 imes 10^{-12}$	0.0008	-							
180	5.86×10^{-13}	0,000								
220	1.99×10^{-13}	0.0006		V	Vhere	r =	0.001	13 ar	nd	
260	8.04×10^{-14}	0.0004					01001			
300	3.59×10^{-14}	0.0004 -		E F	l € [8	- 01	~ 84			
400	6.50×10^{-15}	0.0000		· · · ·		- 2]	т 0.т			
500	1.58×10^{-15}	0.0002								
600	$4.64 imes 10^{-16}$									1. 1
700	1.54×10^{-16}	+ • •	100	200	300	400	500	600	700	h km


Altitude	Mean Mol.		
in km	Weight		
0	28.96		
2	28.96		
4	28.96		
6	28.96		
8	28.96		
10	28.96		
20	28.96		
40	28.96		
60	28.96		
80	28.96		
100	28.88		
140	27.20		
180	26.15		
220	24.98		
260	23.82		
300	22.66		
400	19.94		
500	17.94		
600	16.84		
700	16.17		

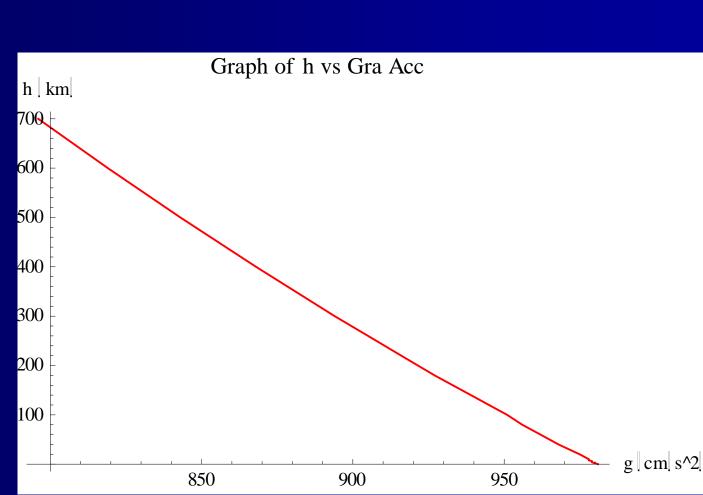
The graph of h (in km) vs mmw


Altitude	Mean Mol.	
in km	Weight	
0	28.96	
2	28.96	
4	28.96	
6	28.96	
8	28.96	
10	28.96	
20	28.96	
40	28.96	
60	28.96	
80	28.96	
100	28.88	
140	27.20	
180	26.15	
220	24.98	
260	23.82	
300	22.66	
400	19.94	
500	17.94	
600	16.84	
700	16.17	

The graph of mmw vs h (in km)


Altitude in km	Pressure in dyn/cm ²	The graph of h (in km) vs Pressure (in dyn/cm^2)
0	1.01×10^{6}	
2	$7.95 imes 10^5$	
4	$6.17 imes 10^5$	
6	$4.72 imes 10^5$	
8	$3.57 imes 10^5$	
10	$2.65 imes 10^5$	
20	$5.53 imes 10^4$	Graph of hus Prossure
40	$2.87 imes 10^3$	Graph of h vs Pressure
60	2.25×10^2	700
80	1.04×10	
100	$3.01 imes 10^{-1}$	600
140	7.41×10^{-3}	500
180	$2.15 imes 10^{-3}$	100
220	$8.58 imes10^{-4}$	400
260	3.86×10^{-4}	300
300	$1.88 imes 10^{-4}$	
400	$4.03 imes 10^{-5}$	200
500	$1.10 imes 10^{-5}$	100
600	$3.45 imes10^{-6}$	Pressure dyn cm^2
700	$1.19 imes10^{-6}$	$\frac{1}{200000} = \frac{1}{400000} = \frac{1}{600000} = \frac{1}{800000} = \frac{1}{100000000} = \frac{1}{10000000000000000000000000000000000$

Altitude	Pressure	The gra h (in km		f Pres	ssure	(in d	yn/cn	n^2)	VS	
in km	in dyn/cm ²		')							
0	1.01 × 10 ⁶	- 								
2	7.95×10^5		Ш	Gra	aph of P	ressure	vs h			
4	6.17×10^{5}	Pressure dyn ci	m^2							
6	$4.72 imes 10^5$	$11 10^6$								
8	$3.57 imes10^{5}$									
10	$2.65 imes 10^5$	800 000						h/	/	
20	$5.53 imes 10^4$			/ 1	\			$-''_{1}$	T	
40	2.87×10^3	<00.000		7)	— 1	no	$_h/P$	1	
60	2.25×10^2	600 000			レノ -	- /	JE			
80	1.04 imes 10	-			/					
100	$3.01 imes 10^{-1}$	400 000 -						1095		h
140	7.41×10^{-3}	-			vviic				un	H
180	$2.15 imes 10^{-3}$	200 000			Ηc	[8 - 9		2 4		
220	8.58×10^{-4}				116	[0 - 3		л.т		
260	3.86×10^{-4}								1	1. 1
300	$1.88 imes 10^{-4}$		100	200	300	400	500	600	700	h km
400	$4.03 imes 10^{-5}$									
500	$1.10 imes 10^{-5}$									
600	$3.45 imes10^{-6}$									
700	$1.19 imes 10^{-6}$									

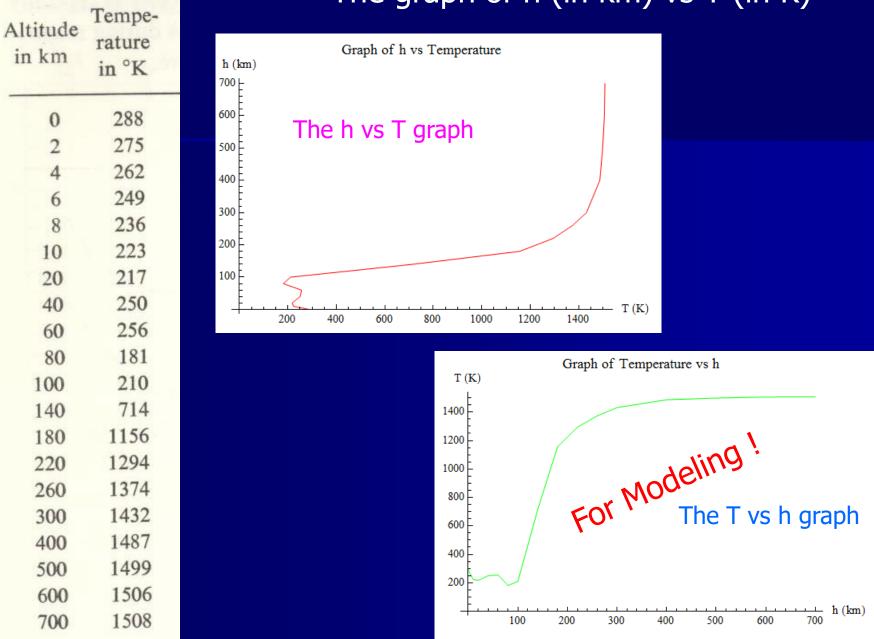

Altitude	Mean Free				
in km	Path in m				
0	6.63 × 10 ⁻⁸				
2	8.07×10^{-8}				
4	9.92×10^{-8}				
6	$1.23 imes 10^{-7}$				
8	$1.55 imes 10^{-7}$				
10	$1.96 imes 10^{-7}$				
20	9.14×10^{-7}				
40	$2.03 imes 10^{-5}$				
60	$2.66 imes 10^{-4}$				
80	$4.07 imes 10^{-3}$				
100	$1.63 imes 10^{-1}$				
140	2.25 imes 10				
180	$1.25 imes 10^2$				
220	3.52×10^2				
260	8.31×10^2				
300	1.77×10^3				
400	8.61×10^3				
500	$3.19 imes10^4$				
600	1.02×10^{5}				
700	2.95×10^{5}				

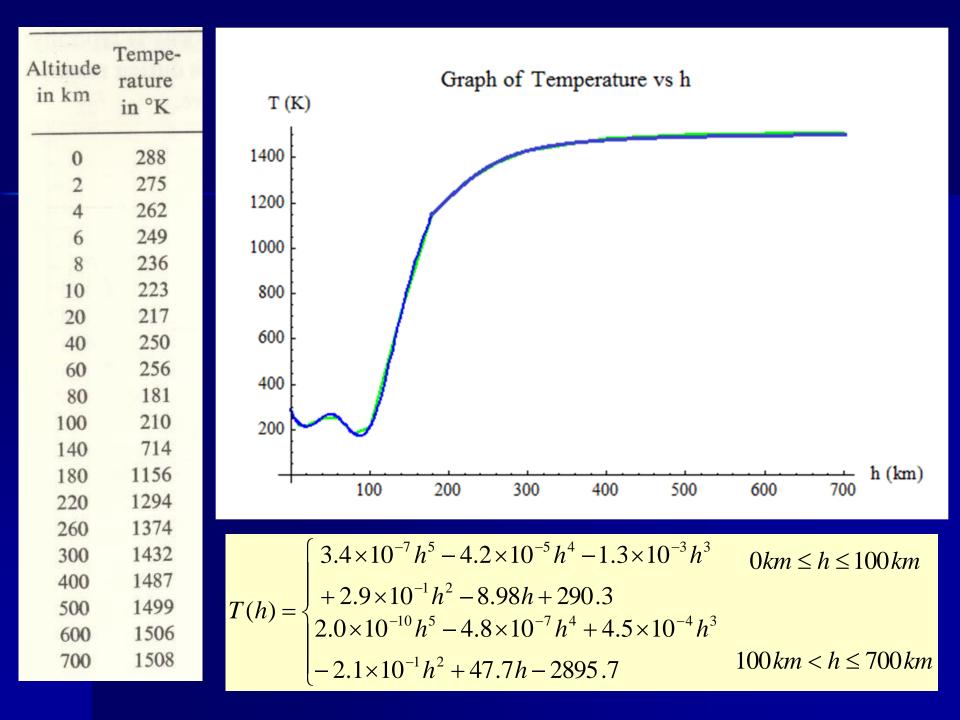
The graph of Mean Free Path (in m) vs h (in km)

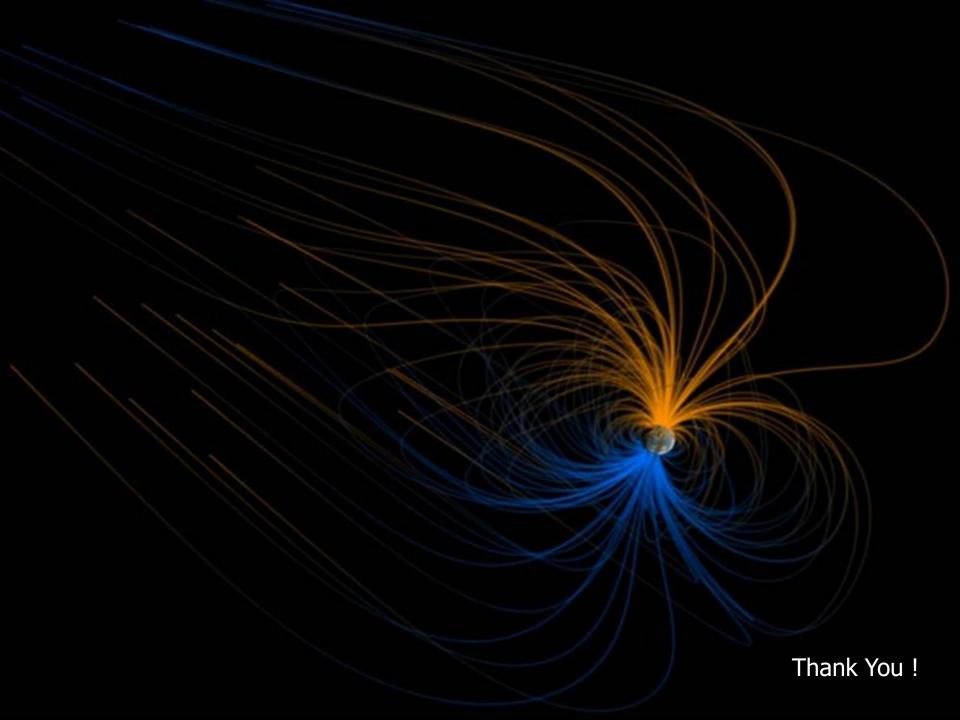
Altitude in km	Accel. Grav. in cm/s ²	The g Accele
0	981	
2	980	
4	979	
6	979	
8	978	h km
10	978	700.⊦
20	975	
40	968	600 -
60	962	
80	956.	500 -
100	951	-
140	939	400
180	927	-
220	916	300 -
260	905	
300	894	200
400	868	100
500	843	
600	819	
700	796	

The graph of h (in km) vs Gravitational Acceleration (in cm/s^2)

Altitude in km	Accel. Grav. in cm/s ²	The graph of Gravitational Acceleration (cm/s^2) vs h (in km)
0	981	
2	980	
4	979	
6	979	
8	978	Graph of Gra Acc vs h
10	978	$g [cm] s^2$
20	975	
40	968	$g(h) = a h^2 + b h + c$
60	962	950 -
80	956.	Where,
100	951	a = 0.000062
140	939	900 - b = -0.30707
180	927	c = 980.625
220	916	
260	905	850 Where,
300	894	a = 6.2 * 10 ^(-5)
400	868	b = -0.31
500	843	c = 980.6
600	819	
700	796	100 200 300 400 500 600 700


eleration (in


= 0.00006244


h km

= -0.307072

The graph of h (in km) vs T (in K)

