PRACTICAL NO. 1 AND 2:

WATER QUALITY ANALYSIS

Water quality analysis is important for many purposes. The methods given in this booklet are sensitive methods to analyze constituents in minute concentrations in inland water bodies. Therefore follow all the instructions given very carefully to obtain the accurate results...

Following methods are given in this booklet:
(1) Determination of Dissolved Oxygen by Winkler's Method.
(2) Biological Oxygen demand
(3) Determination of rate of primary productivity
(4) Determination of Chloraphyll-a concentration in water
(5) Determination of alkalinity
(6)Determination of water Hardness
(7) Determination of Orthophosphate
(8) Determination of Nitrate
(9) Determination of Ammonia
(10) Determination of Dissolved sulphide

1. DETERMINATION OF DISSOLVED OXYGEN IN WATER

 (Winkler's methods)
Reagents: Manganese-II-sulphate solution:
 * $100 \mathrm{~g} \mathrm{MnSO}_{4}$ * $\mathbf{4 \mathrm { H } _ { 2 } \mathrm { O }}$ are dissol_ved in 200 ml of distilled water.

Winkler's reagent:

* $\mathbf{1 0 0} \mathrm{g} \mathrm{NaOH}+\mathbf{5 0} \mathrm{g} \mathrm{KJ}$ are dissolved in $\mathbf{2 0 0} \mathbf{~ m l}$ of distilled water.

Phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathbf{8 5 \%}$, s.g.1.17).
\{Instead of $\mathbf{H}_{3} \mathrm{PO}_{4}$ one may use also $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \%)$ \}.

Sodiumthiosulphate (titrant): $\mathbf{0 . 0 1} \mathrm{N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Starch indicator:

* Dissolved 1 g of starch in 100 ml of distilled water, heat gently.

Procedure:

1. on the lake:

> Fill the water sample - carefully avoiding air bubbles- into a glass bottle of exactly known volume (between 100 and 150 ml), equipped with a ground-in stopper;
$>$ Add below the surface 0.5 ml of manganese solution and 0.5 ml of Winkler's reagent;
$>$ Close the bottle and shake it vigorously.

Chemical reactions:

OH^{-}- ions originating from Winkler's reagent react with the Mn^{2+} - ions, forming a white precipitate:

$$
\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mn}(\mathrm{OH})_{2}
$$

Oxygen dissolved in the water reacts with this precipitate, yielding brown manganese-IV-hydroxyde:

$$
\mathrm{Mn}(\mathrm{OH})_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{MnO}(\mathrm{OH})_{2}
$$

2. In the laboratory:
$>$ Allow the brown $\mathrm{MnO}(\mathrm{OH})_{2}$ to settle;
$>$ decant a few ml of the supernatant;
$>$ add 3 ml of $\mathrm{H}_{3} \mathrm{PO}_{4}$ (or1 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ instead);
$>$ shake the bottle to dissolve the precipitate;
$>$ then titrate the solution immediately with thiosulphate.

Chemical reactions:

Mn^{4+}-ions are reduced to Mn^{2+}-ions in the presence of acid, hereby oxidizing the iodide from Winkler's reagent to iodine:

$$
\mathrm{MnO}(\mathrm{OH})_{2}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mn}^{2+}
$$

The liberated molar amount of iodine corresponds to the amount of oxygen originally present. It is then determined by titration with thiosulphate:

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}
$$

In this titration thiosulphate is oxidized to tetrathionate, whereas the iodine is reduced to iodide. As an indicator for Winkler titration, starch is used that forms a blue iodine-starch complex. The amylose of the starch consists of chains of molecules curled up to form channel-like hollow spaces in which chains of iodine are deposited, such that by interaction the blue colour appears. When all iodine molecules are reduced to iodide, the blue colour disappears

Titration:

* Place the whole content of the bottle into the an Erlenmeyer flask and titrate with $0.01 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ until it has a faint yellow colour.
* Then add 1 ml of starch indicator. The solution becomes blue.
* Titrate now until the blue colour has disappeared.

Calculation:

From the above equations it is obvious that
2 moles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ react with $1 / 2 \mathrm{O}_{2}$.

Therefore 1 mole of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ reacts with $1 / 4 \mathrm{O}_{2}$. This corresponds to $8 \mathrm{~g} \mathrm{O}_{2}$ (molecular weight of O_{2} being 32).
1 ml of thiosulphate solution contains 0.01 mmol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, corresponding to $0.08 \mathrm{mg} \mathrm{O}_{2}$. To find the amount of oxygen dissolved in 11 of lake water, multiply by 1000 and divide by the bottle volume corrected for the ml of reagent added:

$$
\frac{\mathrm{ml}_{0.01 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} \text { cunsumed }} * 0.08 * 1000}{\mathrm{ml}_{\text {bottle volume }}-\mathrm{ml}_{\text {reagent added }}}
$$

Possible interferences:

Oxydizing and reducing substances (organic compounds; $\mathrm{NO}_{2} ; \mathrm{Mn}^{4+} ; \mathrm{Mn}^{7+} ; \mathrm{Cl}_{2} ; \mathrm{S} ; \mathrm{SO}_{3}{ }^{2} ; \mathrm{Fe}^{2+} ; \mathrm{Fe}^{3+}$).

2. DETERMINATION OF BOD

The Biochemical Oxygen Demand is a measure for the degradability of organic material in water by microorganisms.

$$
\mathrm{O}_{2}+\text { organic carbon } \longrightarrow \mathrm{CO}_{2}
$$

The reaction is ferformed at $20^{\circ} \mathrm{C}$ and in the dark (to exclude photosynthetic production of oxygen). The demand, the oxygen consumed by bacteria for the degration within a certain period of time, is obtained as the difference between the initial content of oxygen and the content measured after 2 or 5 days.

Determination:

The content of oxygen is measured according to Winkler's method (seep.7). Waters with low amount of organic material can be used undiluted, but should be enriched with oxygen. The O_{2}-content at measuring time should be at least $2 \mathrm{mg} \mathrm{O}_{2} / l$. If it is less, the water has to be diluted, either with clean river water or with an artificial medium. (The dilution water must contain nutrients for the bacteria.) Composition of an artificial medium:

$$
\begin{array}{ll}
\text { chemical } & \mathrm{mg} / \mathrm{l} \\
\mathrm{~K}_{2} \mathrm{HPO}_{4} & 21.75 \\
\mathrm{KH}_{2} \mathrm{PO}_{4} & 8.5 \\
\mathrm{Na}_{2} \mathrm{HPO}_{4} \times 2 \mathrm{H}_{2} \mathrm{O} & 33.4
\end{array}
$$

$\mathrm{NH}_{4} \mathrm{Cl}$ 1.7
MgSO_{4} 22.5
$\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$ 36.5
FeCl_{3} 0.25

The artificial medium is saturated with oxygen (either by vigorously shaking or by bubbling with an aquarium pump).The oxygen content of the dilution water has to be determined always at the same times as that of the samples.

Sources of error

* Degradation of organic material may also occur via denitrification $\left(\mathrm{NO}_{3} \longrightarrow \mathrm{NO}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O} \longrightarrow \mathrm{N}_{2}\right)$
$>\quad$ Low pH
$>$ Presence of active chlorine
> Low BOD

1. Too few microorganisms present

Remedial measures

Addition of 5 drops of 5% allylthioureasolution / 100 ml of sample

Neutralization (pH of $7-8$ should be adjusted) Equivalent addition of $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Inoculation with $0.3 \mathrm{ml} / 1$ of sedimented domestic sewage or $2 \mathrm{ml} / 1$ of biologically purified sewage or $5-10 \mathrm{ml} / 1$ of river water
2. Little organic material present,
3. Or slow degradation process

Simultaneous determination of COD yields the amount of organic material present. The relation $\mathrm{COD} / \mathrm{BOD}_{5}$ is a rough indication for the kind of process of biochemical degradation:
$\underline{C O D}=4$ slow degradation (e.g.lignin)
BOD_{5}
$\underline{\mathrm{COD}}=1,5$ quick degradation (e.g.domestic waste)
BOD_{5}

Calculation: the reaction must follow first order kinetics.

Calculation:

$$
\begin{aligned}
& \frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}[\text { org. } \mathrm{C}]}{\mathrm{dt}}=-\mathrm{k}[\text { org. } \mathrm{C}] \\
& \int_{0,0}^{\sigma_{0} C_{t}} \frac{d[\text { org. } C]}{\text { org. } C}=-k \int_{0}^{t} d t \\
& \ln \frac{[\operatorname{org} C]_{i}}{[\operatorname{org} C]_{v}}=-k t=2,3 \log \frac{[\operatorname{org} C]_{i}}{[\operatorname{org} C]_{u}} \\
& \text { [org. } \mathrm{Cl}_{0,1} \text { : organic carbon at time } 0 \text { or trespecivly. }
\end{aligned}
$$

[org. $\mathrm{C}_{0,1}$: organic carbon at time 0 or t respectively.
A plot of $2,3 \log \frac{\mathrm{O}_{2}{ }^{\mathrm{t}} \mathrm{mg} / \mathrm{l}}{\mathrm{O}_{2}{ }^{\circ} \mathrm{mg} / \mathrm{l}}$ Versus time allow to determine k .

The smaller the value for k the faster the degradation is performed.

Example:

time	$\mathbf{m g ~ O} \mathbf{2} / \mathbf{l}$	$\boldsymbol{\operatorname { l o g } \mathbf { O } _ { \mathbf { 2 } } { } ^ { \mathbf { ~ m g } / \mathbf { l } }}$
		$\mathbf{O}_{\mathbf{2}}{ }^{\mathbf{}} \mathbf{m g} / \mathbf{l}$
0	8.96	-0.15
1	6.32	-0.256
2	4.96	-0.485

For a diluted sample the BOD is calculated according to the following formula:

$$
\left\{\left(\mathrm{A}_{0}-\mathrm{A}_{1}\right)-\left[\left(\mathrm{B}_{0}-\mathrm{B}_{1}\right)-\left(\mathrm{B}_{0}-\mathrm{B}_{1}\right) 1 / \mathrm{X}\right]\right\} \mathrm{X}
$$

$\mathrm{X}=$ dilution factor
$\mathrm{A}_{0}=\mathrm{BOD}$ at time 0
$\mathrm{A}_{1}=\mathrm{BOD}$ at time 1
$\mathrm{B}_{0}=\mathrm{BOD}$ of the dilution at time 0
$\mathrm{B}_{1}=\mathrm{BOD}$ of the dilution water at time 1

3 DETERMINATION OF RATE OF PRIMARY PRODUCTIVITY

Determination of rate of primary productivity in a column of water at different depths, using light and dark bottle method. This should be measured above the compensation point, in the euphotic region of the water body. (Use your Secchi Disk transparency values to calculate the euphotic limit.

Theory: Phytoplankton productivity can be summarized in the universal equation:
$6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$ Light pigment receptor $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{O}_{2}$

Procedure: light and dark bottle method:

The dark bottle should be covered in black plastic or cloth rather than painted black. The following should be estimated by Winkler method.
(a) The initial amount of O_{2} in a sample at the desired depth.
(b) The amount of Oxygen in a sample entrapped in a transparent stoppered bottle and incubated in the same depth.
(c) The amount of Oxygen in another sample from the same depth incubated in the same manner but in a dark bottle into which no light can penetrate.

The same procedure is repeated at different depths ranging from the surface to the lower limit of the euphotic zone. After a given period of time (about 5 hrs) during day, the Oxygen content in both the light and dark bottles are estimated. This can be repeated for a few more period of in order to cover the whole day.

Calculations:

$$
X=\underbrace{\underline{b}}_{\operatorname{Va}\left(V_{f-2.0)}\right)_{f}^{8.0} X_{f}}
$$

$\mathrm{X}=\mathrm{Oxygen}$ concentration in water mg / l
$\mathrm{V}_{\mathrm{b}}=$ Volume of Sodium Thio Sulphate
$\mathrm{V}_{\mathrm{a}}=$ Volume taken for titration (ml)
$\mathrm{V}_{\mathrm{f}}=$ Bottle volume, with stopper in place (ml)
If the whole contents of the bottle are titrated, then

$$
=\frac{8.0 \times C_{b} \underline{V}_{\underline{b}} m l}{\left(V_{f}-2.0\right)}
$$

The amount of Oxygen used in respiration is the difference between the O_{2} contents (Xi) in the initial bottle and the X_{D} in the dark bottle.

$$
=\left(X_{i}-X_{D}\right) \mathrm{mg} \mathrm{O}_{2} \mathrm{I}^{-1} \mathrm{~h}^{-1}
$$

Net primary production is the difference between the O_{2} contents in the light bottle $\left(\mathrm{X}_{\mathrm{L}}\right)$ \& the initial bottle; $\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{i}}\right) \mathrm{mg} \mathrm{O}_{2} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$

Gross primary production is the sum of net primary production and respiration which is equal to the difference between the O_{2} content in the light bottle and dark bottle.

$$
\left(X_{L}-X_{d}\right) m g O_{2 L}{ }^{-1} h^{-1}
$$

During photosynthesis six O_{2} molecules are used to produce one molecule of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 6 \mathrm{O}_{2}$ \& C_{6} $\mathrm{H}_{12} \mathrm{O}_{6}$

Therefore $32 \mathrm{mg} \mathrm{O}_{2}=12 \mathrm{mg} \mathrm{C}$
$1 \mathrm{mg} \mathrm{O}_{2}=12 / 32 \mathrm{mg} \mathrm{C}$

Therefore primary production $=12 / 32 \mathrm{X}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{D}}\right) \mathrm{mg} \mathrm{Cl}^{-1} \mathrm{~h}^{-1}$

Therefore primary production $=12 / 32\left(X_{L}-X_{D}\right) \mathrm{mg} \mathrm{Cl}^{-1} \mathrm{~h}^{-1}$

Assumptions made:

The rate of respiration in the dark bottle is equal to that in the light bottle (respiration as measured in this technique represent community respiration).

Q: What precautions should you take in the above estimation?

4. DETERMINATION OF CHLOROPHYLL-A

Pigment concentration:

Measure of the concentration of photosynthetic pigments can be used to estimate the biomass of phytoplanktonic populations. The methodology for measuring pigments is relatively direct and accurate and can be performed both on algae separated from the water as well as in vivo.

Degradation products of the chlorophyll phaeophytins are structurally similar to chlorophyll except that the Mg is lost from the ring structure. Pheophytins also absorb the light at some wave lengths. However pheophytin concentrations can be estimated separately on the same sample for which Chlorophyll is determined. Thus pigment analysis can yield sensitive approximation of algal biomass.

Sample preparation:

Water samples should be filtered through either membrane or glass fiber filters. Pore sizes of the filter must be sufficiently small to retain all algae of the smallest dimensions. If membrane filters are used a pore size of 0.8 m (e.g. Millipore AA) is recommended. If glass fiber filters are employed, a pore size of 0.5 to 0.7 m should be used. The pressure differential during filtration should not exceed 0.5 atm , to minimize damage to delicate organisms. The amount of sample required for filtration depends on the phytoplankton concentration. Filtration should be done as rapidly as possible avoiding exposure to bright light or temperature. After filtration, filters should be used immediately in extraction or stored in small dark desicator \& immediately frozen.

Procedure:

(1) Filter 250 ml sample through glass fibre course (G F C) filter and place the filter in 3 ml absolute methanol in tubes covered with Aluminium foil. Keep in the dark.
(2) After an hour of extraction, crush against the sides of the glass vessel using a glass roller.
(3) Then rinse twice in methanol and filter the final solution through a GFC filters to obtain a colour solution.
(4) Make final extraction into 10 ml with methanol.
(5) Record the extinction at length of 665 nm and 750 nm in the spectrophotometer.
(6) Acidify with 5 drops of 0.1 m HCl
(7) Neutralize with MgCO_{3} powder, filter \& read the extinction at 665 nm and 750 nm .

Calculations:

Acid factor for Chlorophyll a in methanol ${ }^{\circledR}=1.5$
$\alpha c=$ absorption coefficient for Chl a in methanol $=74.51 \mathrm{~g}^{-1} \mathrm{~cm}^{-1}$

$\mathrm{A}=$ reading of $\mathrm{Ch} \mathrm{a}, \mathrm{b} \& \mathrm{c}$ at 665 nm before acidifying.
$\mathrm{B}=$ reading of Ch c and phaeophytin at 750 nm before acidifying.
$\mathrm{C}=$ reading of Chc and phaeophytin at 665 nm after acidifying
$\mathrm{D}=$ reading of Ch a and phaeophytin at 750 nm
$\mathrm{V}=$ Volume of filtered sample (250 ml)
$\mathrm{v}=$ Volume of standardised methanol $\left(10 \mathrm{~cm}^{3}\right)$
$1=$ Path length $(1 \mathrm{~cm})$

Lorenzen, C J (1967): Determination of Chlorophyll a phaopigments Spectrophotometric equations.
Limnol. Oceanogr. 12, 343-346

5 DETERMINATION OF ALKALINITY

Determine following in the given water samples, E and F
a. pH , conductivity
a.Total Alkalinity
b.Phenolphthalein alkalinity
c.Carbonate alkalinity
d.Total CO_{2} by
i. Calculations based on pH and Conductivity of the original sample.
ii. Using acidimetric indicator end point.
e. Acidity

Alkalinity of water refers to the quantity and kinds of compounds present which collectively shift the pH to alkaline side of neutrality. The property of alkalinity is imparted by presence of HCO_{3}^{-}, $\mathrm{CO}_{3}{ }^{2-}$ and less frequently by borate, silica and phosphates.

Students are advised to read IBP Handbook No . 8 Methods for physical and chemical analysis of fresh water. H.l.Golterman et al 1978. Section 9.7 and 9.8 for further details.

Principle

The amount of $\mathrm{CO}_{3}{ }^{2-}+\mathrm{OH}^{-}$is determined by titration with acid to pH 8.3 , the end point being detected with phenolphthalein.

The amount of $\mathrm{HCO}_{3}{ }^{-}$is determined by further titration with acid to an end point pH between 4.2 and 5.4 with methyl orange or mixed indicator as end point indicator.
There are at least 4 qualities commonly reported.
Quantity point pH

1. Phenolphthalein Alkalinity
2. Total Alkalinity
3. Carbonate

Symbol

PA
TA
CA

Compound

$\mathrm{OH}^{-}+\mathrm{CO}_{3}{ }^{2}-$
8.3
$\mathrm{OH}^{-}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{HCO}_{3}{ }^{-}$
4.2 to 5.4
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{HCO}_{3}{ }^{-}$

Alkalinity
4. Total Alkalinity

TC

$$
\mathrm{CO}_{3}{ }^{2-}+\mathrm{HCO}_{3}^{-}+\mathrm{CO}_{2}
$$

Reagents

A. $\underline{\mathrm{Hcl}} 0.100 \mathrm{M}\left(100 \mathrm{mmol} \mathrm{l}^{-1}\right)$ or 0.050 M

B. Phenolphthalein indicator

Dissolve 0.5 g of Phenolphthalein in 50 ml of 95% ethanol, and add 50 ml of water. Add dilute (e.g. 0.05 M) CO_{2} free NaOH solution drop wise. Until the solution turns faintly pink.
C. Mixed indicator

Dissolve 0.02 of Methyl red and 0.08 g of Bromocresol green in about 100 ml . of 85% ethanol. This indicator is suitable over the pH range 4.6-5.2.
D. Methyl orange indicator 0.05%

Dissolved 0.05 g of methyl orange in about 100 ml of water this indicator is suitable for equivalence points below pH 4.6 .

Procedure

Mix 100 ml of sample / samples with 2 drops of Phenolphthalein indicator(B) in a conical titration beaker. If the solution remains colourless PA $=0$ and the total alkalinity is determined as described below. If the solution turn red, determine the PA by titrating with standard acid colour practically disappears. (The very faint colour at the end point is best estimated by comparing with a standard end point in $\mathrm{pH}=8.3 \operatorname{Buffer}(\mathrm{E})$.

Add 3 drops per 100 ml of sample either the mixed indicator or Methyl orange and determine the TA by continuing the titration to the second equivalence point. Read the burette when the first tendency to change colour appears. With this approximate value of TA, and with the initial pH with conductivity of the water, the approximate value of total CO_{2} may be found from table 3.4 and 3.5 (provided).

Add 3 drops of mixed indicator or Methyl orange to 100 ml buffer with the same pH as the calculated end point and continue the titration until the same colour is observed in the sample as the buffer. Loss of CO_{2} minimized.

Calculations

A. Phenolphthalein alkalinity $=(\mathrm{OH})+\left(1 / 2 \mathrm{CO}_{3}{ }^{2-}\right)$

Let PA $=$ Phenolphthalein alkalinity (Concentration) $\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
Then PA;

$$
\mathbf{P A}=\frac{\mathbf{C}_{\mathrm{a}} * \mathbf{V}_{8.3}}{\mathbf{V}_{\mathrm{s}}}
$$

Where $\quad C_{a}=$ Concentration of acid $\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
$\mathrm{V}_{8.3}=$ Volume of acid used to titrate to $\mathrm{pH} 8.3(\mathrm{ml})$
$\mathrm{V}_{\mathrm{s}}=$ Volume of sample (ml)
B. Total Alkalinity $=\left(\mathrm{OH}^{-}\right)+\left(1 / 2 \mathrm{CO}_{3}{ }^{2-}\right)+\left(\mathrm{HCO}_{3}{ }^{-}\right)$

Let TA $=$ Total Alkalinity $($ concentration $)\left(\mathrm{m} \mathrm{mol}^{-1}\right)$

Then TA ;

$$
T A=C_{a} * V_{4-6}
$$

\mathbf{V}_{s}

Where $\mathrm{C}_{\mathrm{a}}=$ Concentration of acid $\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
$\mathrm{V}_{4-6}=$ Total volume of acid used to titrate the second end point ($\mathrm{pH} 4-6$) (ml)
$\mathrm{V}_{\mathrm{s}}=$ Volume of sample (ml)
C. Bicarbonate $=\left(\mathrm{HCO}_{3}^{-}\right)$

Let $X=$ concentration of $\mathrm{HCO}_{3}^{-}\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
Then X;

$$
X=(T A-P A)=\frac{V_{8.3}-V_{4-6}}{V_{S}}
$$

D. Carbonate Alkalinity
(Use values for B from table 3.4 provided).
Carbonate Alkalinity $=\left(1 / 2 \mathrm{CO}_{3}{ }^{2-}\right)+\left(\mathrm{HCO}_{3}{ }^{-}\right)$

Let CA = Carbonate alkalinity (concentration) $\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
Then CA;

$$
C A=T A-0.01 B
$$

Where B is a factor with the dimensions of concentration, depend primarily on $\left(\mathrm{OH}^{-}\right)$and to smaller extent on ionic strength. (Estimated from conductivity).
E. Total CO_{2}

Total $\mathrm{CO}_{2}=\left(1 / 2 \mathrm{CO}_{3}{ }^{2-}\right)+\left(\mathrm{HCO}_{3}^{-}\right)+\left(\mathrm{CO}_{2}\right)$
Let $\mathrm{TC}=$ Total CO_{2} concentration $\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-}\right)$
Then TC;

$$
\mathrm{TC}=\alpha \mathbf{C A} .
$$

(The factor α is obtained from table 3.5 provided)
ii. Determination of total CO_{2} by acidimetric indicator

Procedure

Add several drops of phenolphthalein to 100 ml of the sample. Then titrate with 0.05 M NaOH until the solution has a faint pink colour if the solution turns pink when the indicator is added, titrate with 0.05 M HCl instead. Then add the mixed indicator and titrate with 0.05 M HCl solution.

Reagents

A. HCl 0.1 M or 0.05 M
B. NaOH 0.1 M or 0.05 M
C. Mixed indicator: Dissolve 0.02 g of of methyl red and 0.08 g of Bromocrisol green in about 100 ml of 95% ethanol. This indicator i8s suitable over the pH range 4.6-5.2

Calculation:

Let $\mathrm{X}=$ Concentration of CO_{2} in the water sample $\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
Then X

$$
\mathbf{X}=\mathbf{C}_{\mathbf{a}} \frac{\left(\mathbf{V}_{2}-\mathbf{V}_{1}\right)}{\mathbf{V}_{\mathrm{s}}}
$$

Where $C_{a}=$ Concentration of $\operatorname{Hcl}\left(\mathrm{m} \mathrm{mol} \mathrm{l}^{-1}\right)$
$\mathrm{V}_{2}-\mathrm{V}_{1}=$ difference in volume of Hcl at the second and first equivalence points(ml)
$\mathrm{V}_{\mathrm{s}}=$ Volume of sample (ml)

(f). Determination of acidity in sample " G "

Principle: The sample is titrated with dilute $\mathrm{Ba}(\mathrm{OH})_{2}$ to pH 8.6 (many water samples contain no titratable acid).

Reagents:

A. $1 / 2 \mathrm{Ba}(\mathrm{OH})_{2}, \quad$ o.olM $=10 \mathrm{~m} \mathrm{~mol} \mathrm{l}{ }^{-1}$. Dissolve 3.2 g of $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ in 2 litres of boiled $\mathrm{H}_{2} \mathrm{O}$. Store the solution in a container which is connected directly to a buret. Allow any BaCO_{3} precipitate to be settle before transferring the solution to the burette. Standardize with HCl .
B. Mixed indicator.

Mix 10 ml of 0.1% thymol blue(in 50% alcohol) with 30 ml of 0.1 phenolphthalein(in 50% alcohol) At pH 8.6 the colour changes from yellow(acid) to red violet(alkaline).

Procedure: Put a suitable accurately measured 50 ml of sample in a titration flask, add one drop of indicator, and titrate with $\mathrm{Ba}(\mathrm{OH})_{2}$ solution A to the end point.

Calculation:

Let $\mathrm{X}=$ acidity of the water sample $\left(\mathrm{m} \mathrm{mol}^{-1}\right)$
Then X;

$$
\mathbf{X}=\frac{\mathbf{C}_{\mathrm{b}} * \mathbf{V}_{\mathrm{b}}}{\mathbf{V}_{\mathrm{s}}}
$$

```
Where \(\mathrm{C}_{\mathrm{b}}=\) Concentration of \(\mathrm{Ba}(\mathrm{OH})_{2}\left(\mathrm{~m} \mathrm{~mol} \mathrm{l}^{-1}\right)\)
    \(\mathrm{V}_{\mathrm{b}}=\) Volume of \(\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{ml})\)
    \(\mathrm{V}_{\mathrm{s}}=\) Volume of sample (ml)
```

Given your results for:
I. Quantitative analysis of $\mathrm{Ca} . \mathrm{Mg}$ (from previous practical)

$$
\mathrm{Cl}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{HCO}_{3}^{2^{2-}} \text { and total } \mathrm{CO}_{2}
$$

II. pH and Conductivity if the samples in a table.
A- +NaCl
B
C- $+\mathrm{Na}_{2} \mathrm{SO}_{4}$
D water samples from the pond.

6. DETERMINATION OF TOTAL HARDNESS

Principle:

Disodium salt of Ethylene Diamine Terra Acetic acid(EDTA) forms stable unionized complexex with Ca^{2+} and Mg^{2+}. When Eriochrome black T is added to solutions containing Calcium and Mg ions, a complex is formed which is pink. By adding of standard EDTA the dye may change back to its original blue form. EDTA solution removes Ca^{2+} and Mg^{2+} from the dye complex to form the corresponding EDTA complex. The end points indicated by the change of colour of the dye.

Reagents:

1) $1 / 2 \mathrm{Na}_{2}$ EDTA $0.020 \mathrm{M}-20 \mathrm{~m} \mathrm{~mol}^{-1}\left(\mathrm{Na}_{2}\right.$ EDTA 0.01M) Dry Na_{2} EDTA(A.R) at $80^{\circ} \mathrm{C}$, Dissolve 3.722 g of Na_{2} EDTA in $500 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and dilute to 1000 ml (1 ml is equivalent to 0.4 $\mathrm{mg} \mathrm{Ca}{ }^{2+}$
2) Borax buffer for $\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}, \mathrm{pH} 12$

Dissolve 8 g of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .10 \mathrm{H}_{2} \mathrm{O}$ in 160 ml of $\mathrm{H}_{2} \mathrm{O}$ add to this solution 2 g of $\mathrm{NaOH}+1 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{~S}-9 \mathrm{H}_{2} \mathrm{O}$ previously dissolved together in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ and dilute the mixed solution to 20 ml Dilute 10 times with $\mathrm{H}_{2} \mathrm{O}$ before use.
3) Eriochrome Black T indicator

Grind together 0.4 g of Eriochrome Black T. and 100 g of $\mathrm{NaCl}(\mathrm{AR})$ and keep stopper bottle.

Procedure:

Mix 25 ml sample with 1 ml of the diluted buffer in a 100 ml flask. Add about 100 mg of indicator powder and heat at $70^{\circ} \mathrm{C}$. titrate with EDTA solution when the wine red colour changes to blue.

Calculation:

$$
X=\frac{\mathrm{Ca}^{*} * \mathrm{~V}_{\mathrm{t}} \mathrm{~m} \mathrm{~mol}^{-1}}{\mathrm{~V}_{\mathrm{s}}}
$$

$\mathrm{X}=$ Concentration of $\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}$ in the water sample $\left(\mathrm{m} \mathrm{mol}^{-1}\right)$
$\mathrm{Ca}=$ Concentration of $1 / 2 \mathrm{Na}_{2}$ EDTA $\left(\mathrm{m} \mathrm{mol}^{-1}\right)$
$\mathrm{V}_{\mathrm{s}}=$ Volume of Sample (ml)
$\mathrm{V}_{\mathrm{t}}=$ Volume of EDTA to the end point
Reference: Water analysis: Mackereth et al

7. DETERMINATION OF ORTHOPHOSPHATE

(Ammonium molybdate method)

For phosphate determinations all the glass ware used (bottles, pipettes, measuring cylinders etc.) have to be washed with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and then rinsed with distilled water, because phosphate is ubiquitous!

Reagents: Ammonium molibdate solution

* Dissolve 3 g of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}$ p.a 100 ml of distilled water. (Stored in a plastic bottle out of direct sunlight, the solution is stable for a long time).

Sulphuric acid solution

* Place 225 ml of distilled water into a bottle,
* add 35 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ p.a (sp.gr. 1.82). After cooling the

Solution is stored in a glass bottle.

Potassium antimonyl-titrate solution

* Dissolve 0.136 g of $\mathrm{K}\left[\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{6} \mathrm{Sb}(\mathrm{OH})_{2}\right]^{*} 1 / 2 \mathrm{H}_{2} \mathrm{O}$ in 100 ml of distilled water.

Heat, if necessary. The solution is stable for some months.

Mixed reagent

* Mix together: 100 ml of reagent (1)

250 ml of reagent (2),
100 ml of reagent (3),
50 ml of reagent (4).
The mixed reagent cannot be stored for more than 6 hours. Prepare therefore only the required quantity.

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$

Ascorbic acid

Principle of chemical reaction:

Ammonium molybdate forms with phosphoric acid at very low pH -value a yellow substance:

Under the influence of reducing agents this yellow substance is transformed into a mixture of molybdanous oxydes, that have a deep blue colour.

$$
\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} * 12 \mathrm{MoO}_{3} \xrightarrow{\text { Ascorbate }}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} * 12 \mathrm{MoO}_{3-\mathrm{x}}(\mathrm{OH})_{\mathrm{x}}
$$

(x can be e.g. 0.5 or 1).

Procedure:

A) For the standard curve:

Stock solution: 1 g of $\mathrm{PO}_{4}-\mathrm{P} / \mathrm{l}$

* Dissolve 4.393 g of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (MW: $136.09 \mathrm{~g} / \mathrm{mol}$) in less than 11 of distilled water.
* Add 1 ml of concentrated sulphiuric acid.
* Make up to 11 with distilled water.

Working solution: $1 \mathrm{mg} \mathrm{PO}_{4}-\mathrm{P} / \mathrm{l}$

* Dilute the stock solution 1: 1000.
* Prepare 50 ml of each of the following concentrations:

0
20
40
100
$\mu \mathrm{g} \mathrm{PO}_{4}-\mathrm{P} / \mathrm{l}$

0
1.0
2.0
5.0
ml of $W S$
B) For the measurement:

* Place 50 ml of the filtered lake sample in an Erlenmeyer flask,
* Add 5 ml of mixed reagent to Lake Sample and standard series
* Mix
* After 5 minutes (or within the next 2-3 hours) measure the extinctions at a wave length Of 720 nm or 885 nm .

Calculation:

Plot the extinctions against the standard concentrations and read the concentration of your sample from the graph.

STANDARD CURVE FOR ORTHOPHOSPHATE

8. DETERMINATION OF NITRATE

(Sodium-salycilate method)

Reagent: \quad Na-salycilate solution
 * Dissolve 0.5 g Na-salycilate p.a in 100 ml of distilled water (Prepare freshly, when needed).

Sulphuric acid

concentrated sulphuric acid p.a. (sp.gr. 1.82)

$\mathbf{N a O H}-t a r t r a t e$ solution

*Dissolve 80 g NaOH p.a. in 180 ml of distilled water,

* Add immediately (as long as the solution is still hot)

10 g K-Na-tartrate p.a. and dissolve it.

* make the solution up to 200 ml .

Chemical reactions:

Nitrate ions $\left(\mathrm{NO}_{3}{ }^{-}\right)$form with Na -salycilate nitro-salycilic acid. (Salycilic acid is a basis for the production of dyes). This reaction is performed in water-free medium in the presence of sulphuric acid. Therefore the samples have to be evaporated to dryness after addition of the Na-salycilate. The residues, a mixture of ortho- and para-nitro-salycilic acid, are dissolved in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. In alkaline solution they develop a yellow colour.

Mechanism of the reaction:

Procedure:

A) For the standard curve:

Stock solution: $0.1 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{l}$ (MW: $101.11 \mathrm{~g} / \mathrm{mol}$).

* Dissolve 0.722 g of potassium nitrate $\left(\mathrm{KNO}_{3}\right.$ p.a) in 11 of distilled water.

Working solution: $10 \mathrm{mg} \mathrm{NO} 3-\mathrm{N} / \mathrm{l}$

* Dilute the stock solution 1:10.
concentrations:

0
0.5
1.0
2.0
$\mathrm{MgNO}_{3}-\mathrm{N} / \mathrm{l}$

0
0.5
1.0
2.0

Ml of $W S$

* The above mentioned ml of $W S$ are pipetted in evaporation bottles.

NO WATER IS ADDED!
B) Evaporation and measurement

* Place 10 ml of the filtered lake sample in an evaporation bottle,
* Add to Lake Sample and standard series 1 ml of (1);
* Put the bottles into the oven and evaporate to dryness at a temperature of $95^{\circ} \mathrm{C}$.
* Dissolve the residue quantitatively in 1 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (2), swirling the bottle carefully While it is still warm.
* Add 50 ml distilled water and mix.
* Add 7 ml of (3) and make up with distilled water to a final volume of 100 ml .
* Mix again and measure the extinction immediately at a wave length of 420 nm .

STANDARD CURVE FOR NITRATE
$\mathrm{m}=0.193$

Standard curve for Nitrate

Concentration/mg NO 3 - N / l

9. DETERMINATION OF AMMONIA

(Indophenol blue method)

Reagents: Ammonia free de-inonized water (AFW)

> * Deionized water is passed over an acid cation exchange resin (e.g. hydogenated form of Dowex $50 \mathrm{WX8}, 20-50 \mathrm{mesh}$).

NaOH-EDTA solution

* Dissolve 1.4 g NaOH p.a. in 100 ml of 0.1 M EDTA (Titriplex III).

Phenolic solution

* Dissolve 12 g Na -salycilate and 100 mg Na-nitroprusside in 100 ml AFW (must be prepared freshly when needed).

Hypochlorite solution

* 120 mg Di-chlor-sodium-cyanurate are dissolved in 100 ml of (2).

Chemical reactions: see p. 26
(Literature: M. D.Krom (1980) The Analyst: vol.105, no 1249, p.305)

Procedure:

All the glass ware used for this determination has to be washed with $10 \% \mathrm{HCl}$ and carefully rinsed with AFW!
A) For the standard curve:

Stock solution: $1 \mathrm{~g} \mathrm{NH}_{4}$-N/l

* 4.717 g ammonium sulphate $\left(\mathrm{NH}_{4}\right){ }_{2} \mathrm{SO}_{4}$ p.a. dried at $100^{0} \mathrm{C}$ are dissolved in about 200 ml of AFW;
* Add 2 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$;
* Make up to 11 with AFW.

Working solution: 1 mg NH 4 -N/l

* Dilute the stock solution 1: 1000 with AFW (for higher accuracy do it in two steps,
e.g.
* 1. Step
make up 10 ml of stock solution to 11 with AFW: WS 1 .
* 2. Step make up 50 ml of $\boldsymbol{W S} \boldsymbol{I}$ to 500 ml with AFW: WS 2.

0

$$
40
$$

100
200
$300 \mathrm{mg} / \mathrm{l}$

0
2.0
5.0
10.0
$15.0 \mathrm{ml} W S$
B) For the measurement

* Place 50 ml of the filtered lake sample in an Erlenmeyer bottle;
* Add to lake Sample and standard series 2 ml of (3) and mix.
* Add 2 ml of (4), mix again.
* Put the samples for 90 ml minutes in a dark place to develop the colour.
* Then measure the extinction within the next 48 hours at a wave length of 685 nm .

10. DETERMINATION OF THE QUANTITY OF TOTAL AND DISSOLVED SULPHIDE

Principle:

The S^{2-} is precipitated with CdCl_{2} in similar bottles used in Winkler method. When the precipitate is settled, supernatant is removed and the Cd^{2+} is dissolvec in an acid iodine solution. The excess iodine is titrated with $\mathrm{S}_{2} \mathrm{O}_{3}$.
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}$

Reagents :

A. Hcl 4M - 1 litre 12 m Hcl diluted to 3 litre
B. $\mathrm{Na}_{2} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{3}$ solution, $(0.025 \mathrm{M}=25 \mathrm{~m} \mathrm{~mol} \mathrm{1})$

Dissolve 6.2 g Of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
1 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dilute to 1 litre. Store in a brown bottle.
C. $\mathbf{C d C l}_{\mathbf{2}} \mathbf{2 \%}$

Dissolve $20 \mathrm{~g} \mathrm{CdCl}_{2}$ in 1 litre of $\mathrm{H}_{2} \mathrm{O}$.
D. Iodine Solution: $1 / 2 \mathrm{I}_{2} 0.025 \mathrm{M}=25 \mathrm{M} \mathrm{mol} \mathrm{l}^{-1}$

Dissolve 20 g of KI in 50 ml of $\mathrm{H}_{2} \mathrm{O}$ and add 3.17 g of I_{2}. After the Iodine has dissolved, dilute to 1 litre and standardize against standardized $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ with starch as indicator.

E. Starch indicator, 1 \%

Disperse 1 g of of starch in 100 ml of water and warm to $80^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$ stir well, allow to cool and 0.1 g of salicylic acid.

Procedure:

Fill the glass stopper bottle with given water sample (or in the field). The volume of the bottle should be about 110 ml and should be known. Add 1 ml CdCl 2 solution, replace the stopper carefully to avoid inclusion of air bubbles and thoroughly mix the content by inverting and rotating the bottle several times for about 10 seconds. When the precipitate has settled to the lower third of the bottle, repeat the mixing and then allow the precipitate to settle completely leaving a clear supernatant. Dissolve the precipitate in an exactly known small volume of Iodine solution (D) and 5 ml of Hcl (a). Titrate the excess iodine with standardized $\mathrm{S}_{2} \mathrm{O}_{3}$ using 2 ml of starch as an indicator added only towards the end of the titration.

Interference‘s

If much organic matter is present. The precipitate should be collected on a membrane filter and washed with water.

